| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > seglerflx | Structured version Visualization version GIF version | ||
| Description: Segment comparison is reflexive. Theorem 5.7 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| seglerflx | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐵〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) | |
| 2 | btwntriv2 35973 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 Btwn 〈𝐴, 𝐵〉) | |
| 3 | cgrrflx 35948 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | |
| 4 | breq1 5105 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 Btwn 〈𝐴, 𝐵〉 ↔ 𝐵 Btwn 〈𝐴, 𝐵〉)) | |
| 5 | opeq2 4834 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 6 | 5 | breq2d 5114 | . . . . 5 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝐵〉Cgr〈𝐴, 𝑦〉 ↔ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉)) |
| 7 | 4, 6 | anbi12d 632 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑦〉) ↔ (𝐵 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉))) |
| 8 | 7 | rspcev 3585 | . . 3 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ (𝐵 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑦〉)) |
| 9 | 1, 2, 3, 8 | syl12anc 836 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑦〉)) |
| 10 | simp1 1136 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) | |
| 11 | simp2 1137 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) | |
| 12 | brsegle 36069 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐵〉 ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑦〉))) | |
| 13 | 10, 11, 1, 11, 1, 12 | syl122anc 1381 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐵〉 ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑦〉))) |
| 14 | 9, 13 | mpbird 257 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐵〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 〈cop 4591 class class class wbr 5102 ‘cfv 6499 ℕcn 12162 𝔼cee 28791 Btwn cbtwn 28792 Cgrccgr 28793 Seg≤ csegle 36067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-ee 28794 df-btwn 28795 df-cgr 28796 df-segle 36068 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |