| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnfix1 | Structured version Visualization version GIF version | ||
| Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019.) |
| Ref | Expression |
|---|---|
| psgnfix.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| psgnfix.t | ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
| psgnfix.s | ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) |
| Ref | Expression |
|---|---|
| psgnfix1 | ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfix.p | . . . . 5 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 2 | eqid 2729 | . . . . 5 ⊢ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} | |
| 3 | psgnfix.s | . . . . . 6 ⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) | |
| 4 | 3 | fveq2i 6861 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| 5 | eqid 2729 | . . . . 5 ⊢ (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾}) | |
| 6 | 1, 2, 4, 5 | symgfixelsi 19365 | . . . 4 ⊢ ((𝐾 ∈ 𝑁 ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘𝑆)) |
| 7 | 6 | adantll 714 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘𝑆)) |
| 8 | diffi 9139 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) | |
| 9 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑁 ∖ {𝐾}) ∈ Fin) |
| 10 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | psgnfix.t | . . . . 5 ⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | |
| 12 | 3, 10, 11 | psgnfitr 19447 | . . . 4 ⊢ ((𝑁 ∖ {𝐾}) ∈ Fin → ((𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘𝑆) ↔ ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) |
| 13 | 9, 12 | syl 17 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘𝑆) ↔ ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) |
| 14 | 7, 13 | mpbid 232 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤)) |
| 15 | 14 | ex 412 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ∃𝑤 ∈ Word 𝑇(𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 ∖ cdif 3911 {csn 4589 ran crn 5639 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 Word cword 14478 Basecbs 17179 Σg cgsu 17403 SymGrpcsymg 19299 pmTrspcpmtr 19371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-tset 17239 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-efmnd 18796 df-grp 18868 df-minusg 18869 df-subg 19055 df-symg 19300 df-pmtr 19372 |
| This theorem is referenced by: psgndif 21511 |
| Copyright terms: Public domain | W3C validator |