MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcphnmval Structured version   Visualization version   GIF version

Theorem tcphnmval 25199
Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
tcphnmval.n 𝑁 = (norm‘𝐺)
tcphnmval.v 𝑉 = (Base‘𝑊)
tcphnmval.h , = (·𝑖𝑊)
Assertion
Ref Expression
tcphnmval ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))

Proof of Theorem tcphnmval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tcphval.n . . . 4 𝐺 = (toℂPreHil‘𝑊)
2 tcphnmval.n . . . 4 𝑁 = (norm‘𝐺)
3 tcphnmval.v . . . 4 𝑉 = (Base‘𝑊)
4 tcphnmval.h . . . 4 , = (·𝑖𝑊)
51, 2, 3, 4tchnmfval 25198 . . 3 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))))
65fveq1d 6888 . 2 (𝑊 ∈ Grp → (𝑁𝑋) = ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑋))
7 oveq12 7422 . . . . 5 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 , 𝑥) = (𝑋 , 𝑋))
87anidms 566 . . . 4 (𝑥 = 𝑋 → (𝑥 , 𝑥) = (𝑋 , 𝑋))
98fveq2d 6890 . . 3 (𝑥 = 𝑋 → (√‘(𝑥 , 𝑥)) = (√‘(𝑋 , 𝑋)))
10 eqid 2734 . . 3 (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥))) = (𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))
11 fvex 6899 . . 3 (√‘(𝑋 , 𝑋)) ∈ V
129, 10, 11fvmpt 6996 . 2 (𝑋𝑉 → ((𝑥𝑉 ↦ (√‘(𝑥 , 𝑥)))‘𝑋) = (√‘(𝑋 , 𝑋)))
136, 12sylan9eq 2789 1 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑁𝑋) = (√‘(𝑋 , 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cmpt 5205  cfv 6541  (class class class)co 7413  csqrt 15254  Basecbs 17229  ·𝑖cip 17278  Grpcgrp 18920  normcnm 24533  toℂPreHilctcph 25137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-seq 14025  df-exp 14085  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-tset 17292  df-ds 17295  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-sbg 18925  df-nm 24539  df-tng 24541  df-tcph 25139
This theorem is referenced by:  ipcau2  25204  tcphcphlem1  25205  tcphcph  25207
  Copyright terms: Public domain W3C validator