| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yonffth | Structured version Visualization version GIF version | ||
| Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| Ref | Expression |
|---|---|
| yonffth.y | ⊢ 𝑌 = (Yon‘𝐶) |
| yonffth.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| yonffth.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| yonffth.q | ⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
| yonffth.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| yonffth.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| yonffth.h | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| yonffth | ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | yonffth.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
| 2 | eqid 2729 | . 2 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | eqid 2729 | . 2 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 4 | yonffth.o | . 2 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 5 | yonffth.s | . 2 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 6 | eqid 2729 | . 2 ⊢ (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) = (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) | |
| 7 | yonffth.q | . 2 ⊢ 𝑄 = (𝑂 FuncCat 𝑆) | |
| 8 | eqid 2729 | . 2 ⊢ (HomF‘𝑄) = (HomF‘𝑄) | |
| 9 | eqid 2729 | . 2 ⊢ ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) = ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) | |
| 10 | eqid 2729 | . 2 ⊢ (𝑂 evalF 𝑆) = (𝑂 evalF 𝑆) | |
| 11 | eqid 2729 | . 2 ⊢ ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) = ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) | |
| 12 | yonffth.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 13 | fvex 6871 | . . . 4 ⊢ (Homf ‘𝑄) ∈ V | |
| 14 | 13 | rnex 7886 | . . 3 ⊢ ran (Homf ‘𝑄) ∈ V |
| 15 | yonffth.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 16 | unexg 7719 | . . 3 ⊢ ((ran (Homf ‘𝑄) ∈ V ∧ 𝑈 ∈ 𝑉) → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) | |
| 17 | 14, 15, 16 | sylancr 587 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) |
| 18 | yonffth.h | . 2 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
| 19 | ssidd 3970 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ (ran (Homf ‘𝑄) ∪ 𝑈)) | |
| 20 | eqid 2729 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) | |
| 21 | eqid 2729 | . 2 ⊢ (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) = (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) | |
| 22 | eqid 2729 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) | |
| 23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22 | yonffthlem 18243 | 1 ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 〈cop 4595 ↦ cmpt 5188 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 1st c1st 7966 2nd c2nd 7967 tpos ctpos 8204 Basecbs 17179 Hom chom 17231 Catccat 17625 Idccid 17626 Homf chomf 17627 oppCatcoppc 17672 Invcinv 17707 Func cfunc 17816 ∘func ccofu 17818 Full cful 17866 Faith cfth 17867 Nat cnat 17906 FuncCat cfuc 17907 SetCatcsetc 18037 ×c cxpc 18129 1stF c1stf 18130 2ndF c2ndf 18131 〈,〉F cprf 18132 evalF cevlf 18170 HomFchof 18209 Yoncyon 18210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-hom 17244 df-cco 17245 df-cat 17629 df-cid 17630 df-homf 17631 df-comf 17632 df-oppc 17673 df-sect 17709 df-inv 17710 df-iso 17711 df-ssc 17772 df-resc 17773 df-subc 17774 df-func 17820 df-cofu 17822 df-full 17868 df-fth 17869 df-nat 17908 df-fuc 17909 df-setc 18038 df-xpc 18133 df-1stf 18134 df-2ndf 18135 df-prf 18136 df-evlf 18174 df-curf 18175 df-hof 18211 df-yon 18212 |
| This theorem is referenced by: yoniso 18246 |
| Copyright terms: Public domain | W3C validator |