| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yonffth | Structured version Visualization version GIF version | ||
| Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.) |
| Ref | Expression |
|---|---|
| yonffth.y | ⊢ 𝑌 = (Yon‘𝐶) |
| yonffth.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| yonffth.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| yonffth.q | ⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
| yonffth.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| yonffth.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| yonffth.h | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| yonffth | ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | yonffth.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
| 2 | eqid 2734 | . 2 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | eqid 2734 | . 2 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 4 | yonffth.o | . 2 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 5 | yonffth.s | . 2 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 6 | eqid 2734 | . 2 ⊢ (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) = (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) | |
| 7 | yonffth.q | . 2 ⊢ 𝑄 = (𝑂 FuncCat 𝑆) | |
| 8 | eqid 2734 | . 2 ⊢ (HomF‘𝑄) = (HomF‘𝑄) | |
| 9 | eqid 2734 | . 2 ⊢ ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) = ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) | |
| 10 | eqid 2734 | . 2 ⊢ (𝑂 evalF 𝑆) = (𝑂 evalF 𝑆) | |
| 11 | eqid 2734 | . 2 ⊢ ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) = ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) | |
| 12 | yonffth.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 13 | fvex 6899 | . . . 4 ⊢ (Homf ‘𝑄) ∈ V | |
| 14 | 13 | rnex 7914 | . . 3 ⊢ ran (Homf ‘𝑄) ∈ V |
| 15 | yonffth.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 16 | unexg 7745 | . . 3 ⊢ ((ran (Homf ‘𝑄) ∈ V ∧ 𝑈 ∈ 𝑉) → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) | |
| 17 | 14, 15, 16 | sylancr 587 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) |
| 18 | yonffth.h | . 2 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
| 19 | ssidd 3987 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ (ran (Homf ‘𝑄) ∪ 𝑈)) | |
| 20 | eqid 2734 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) | |
| 21 | eqid 2734 | . 2 ⊢ (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) = (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) | |
| 22 | eqid 2734 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) | |
| 23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22 | yonffthlem 18297 | 1 ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 〈cop 4612 ↦ cmpt 5205 ran crn 5666 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 1st c1st 7994 2nd c2nd 7995 tpos ctpos 8232 Basecbs 17229 Hom chom 17284 Catccat 17678 Idccid 17679 Homf chomf 17680 oppCatcoppc 17725 Invcinv 17760 Func cfunc 17870 ∘func ccofu 17872 Full cful 17920 Faith cfth 17921 Nat cnat 17960 FuncCat cfuc 17961 SetCatcsetc 18091 ×c cxpc 18183 1stF c1stf 18184 2ndF c2ndf 18185 〈,〉F cprf 18186 evalF cevlf 18224 HomFchof 18263 Yoncyon 18264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-hom 17297 df-cco 17298 df-cat 17682 df-cid 17683 df-homf 17684 df-comf 17685 df-oppc 17726 df-sect 17762 df-inv 17763 df-iso 17764 df-ssc 17825 df-resc 17826 df-subc 17827 df-func 17874 df-cofu 17876 df-full 17922 df-fth 17923 df-nat 17962 df-fuc 17963 df-setc 18092 df-xpc 18187 df-1stf 18188 df-2ndf 18189 df-prf 18190 df-evlf 18228 df-curf 18229 df-hof 18265 df-yon 18266 |
| This theorem is referenced by: yoniso 18300 |
| Copyright terms: Public domain | W3C validator |