Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > yonffth | Structured version Visualization version GIF version |
Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.) |
Ref | Expression |
---|---|
yonffth.y | ⊢ 𝑌 = (Yon‘𝐶) |
yonffth.o | ⊢ 𝑂 = (oppCat‘𝐶) |
yonffth.s | ⊢ 𝑆 = (SetCat‘𝑈) |
yonffth.q | ⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
yonffth.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
yonffth.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
yonffth.h | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
Ref | Expression |
---|---|
yonffth | ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yonffth.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
2 | eqid 2737 | . 2 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | eqid 2737 | . 2 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
4 | yonffth.o | . 2 ⊢ 𝑂 = (oppCat‘𝐶) | |
5 | yonffth.s | . 2 ⊢ 𝑆 = (SetCat‘𝑈) | |
6 | eqid 2737 | . 2 ⊢ (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) = (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) | |
7 | yonffth.q | . 2 ⊢ 𝑄 = (𝑂 FuncCat 𝑆) | |
8 | eqid 2737 | . 2 ⊢ (HomF‘𝑄) = (HomF‘𝑄) | |
9 | eqid 2737 | . 2 ⊢ ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) = ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) | |
10 | eqid 2737 | . 2 ⊢ (𝑂 evalF 𝑆) = (𝑂 evalF 𝑆) | |
11 | eqid 2737 | . 2 ⊢ ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) = ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) | |
12 | yonffth.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
13 | fvex 6730 | . . . 4 ⊢ (Homf ‘𝑄) ∈ V | |
14 | 13 | rnex 7690 | . . 3 ⊢ ran (Homf ‘𝑄) ∈ V |
15 | yonffth.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
16 | unexg 7534 | . . 3 ⊢ ((ran (Homf ‘𝑄) ∈ V ∧ 𝑈 ∈ 𝑉) → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) | |
17 | 14, 15, 16 | sylancr 590 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) |
18 | yonffth.h | . 2 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
19 | ssidd 3924 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ (ran (Homf ‘𝑄) ∪ 𝑈)) | |
20 | eqid 2737 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) | |
21 | eqid 2737 | . 2 ⊢ (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) = (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) | |
22 | eqid 2737 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) | |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22 | yonffthlem 17790 | 1 ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 ∩ cin 3865 ⊆ wss 3866 〈cop 4547 ↦ cmpt 5135 ran crn 5552 ‘cfv 6380 (class class class)co 7213 ∈ cmpo 7215 1st c1st 7759 2nd c2nd 7760 tpos ctpos 7967 Basecbs 16760 Hom chom 16813 Catccat 17167 Idccid 17168 Homf chomf 17169 oppCatcoppc 17214 Invcinv 17250 Func cfunc 17360 ∘func ccofu 17362 Full cful 17409 Faith cfth 17410 Nat cnat 17448 FuncCat cfuc 17449 SetCatcsetc 17581 ×c cxpc 17675 1stF c1stf 17676 2ndF c2ndf 17677 〈,〉F cprf 17678 evalF cevlf 17717 HomFchof 17756 Yoncyon 17757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-hom 16826 df-cco 16827 df-cat 17171 df-cid 17172 df-homf 17173 df-comf 17174 df-oppc 17215 df-sect 17252 df-inv 17253 df-iso 17254 df-ssc 17315 df-resc 17316 df-subc 17317 df-func 17364 df-cofu 17366 df-full 17411 df-fth 17412 df-nat 17450 df-fuc 17451 df-setc 17582 df-xpc 17679 df-1stf 17680 df-2ndf 17681 df-prf 17682 df-evlf 17721 df-curf 17722 df-hof 17758 df-yon 17759 |
This theorem is referenced by: yoniso 17793 |
Copyright terms: Public domain | W3C validator |