![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > yonffth | Structured version Visualization version GIF version |
Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.) |
Ref | Expression |
---|---|
yonffth.y | ⊢ 𝑌 = (Yon‘𝐶) |
yonffth.o | ⊢ 𝑂 = (oppCat‘𝐶) |
yonffth.s | ⊢ 𝑆 = (SetCat‘𝑈) |
yonffth.q | ⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
yonffth.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
yonffth.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
yonffth.h | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
Ref | Expression |
---|---|
yonffth | ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yonffth.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
2 | eqid 2740 | . 2 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | eqid 2740 | . 2 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
4 | yonffth.o | . 2 ⊢ 𝑂 = (oppCat‘𝐶) | |
5 | yonffth.s | . 2 ⊢ 𝑆 = (SetCat‘𝑈) | |
6 | eqid 2740 | . 2 ⊢ (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) = (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) | |
7 | yonffth.q | . 2 ⊢ 𝑄 = (𝑂 FuncCat 𝑆) | |
8 | eqid 2740 | . 2 ⊢ (HomF‘𝑄) = (HomF‘𝑄) | |
9 | eqid 2740 | . 2 ⊢ ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) = ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) | |
10 | eqid 2740 | . 2 ⊢ (𝑂 evalF 𝑆) = (𝑂 evalF 𝑆) | |
11 | eqid 2740 | . 2 ⊢ ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) = ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) | |
12 | yonffth.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
13 | fvex 6935 | . . . 4 ⊢ (Homf ‘𝑄) ∈ V | |
14 | 13 | rnex 7952 | . . 3 ⊢ ran (Homf ‘𝑄) ∈ V |
15 | yonffth.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
16 | unexg 7780 | . . 3 ⊢ ((ran (Homf ‘𝑄) ∈ V ∧ 𝑈 ∈ 𝑉) → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) | |
17 | 14, 15, 16 | sylancr 586 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) |
18 | yonffth.h | . 2 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
19 | ssidd 4032 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ (ran (Homf ‘𝑄) ∪ 𝑈)) | |
20 | eqid 2740 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) | |
21 | eqid 2740 | . 2 ⊢ (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) = (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) | |
22 | eqid 2740 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) | |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22 | yonffthlem 18354 | 1 ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 〈cop 4654 ↦ cmpt 5249 ran crn 5701 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 1st c1st 8030 2nd c2nd 8031 tpos ctpos 8268 Basecbs 17260 Hom chom 17324 Catccat 17724 Idccid 17725 Homf chomf 17726 oppCatcoppc 17771 Invcinv 17808 Func cfunc 17920 ∘func ccofu 17922 Full cful 17971 Faith cfth 17972 Nat cnat 18011 FuncCat cfuc 18012 SetCatcsetc 18144 ×c cxpc 18239 1stF c1stf 18240 2ndF c2ndf 18241 〈,〉F cprf 18242 evalF cevlf 18281 HomFchof 18320 Yoncyon 18321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-tpos 8269 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-fz 13570 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-hom 17337 df-cco 17338 df-cat 17728 df-cid 17729 df-homf 17730 df-comf 17731 df-oppc 17772 df-sect 17810 df-inv 17811 df-iso 17812 df-ssc 17873 df-resc 17874 df-subc 17875 df-func 17924 df-cofu 17926 df-full 17973 df-fth 17974 df-nat 18013 df-fuc 18014 df-setc 18145 df-xpc 18243 df-1stf 18244 df-2ndf 18245 df-prf 18246 df-evlf 18285 df-curf 18286 df-hof 18322 df-yon 18323 |
This theorem is referenced by: yoniso 18357 |
Copyright terms: Public domain | W3C validator |