![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > yonffth | Structured version Visualization version GIF version |
Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.) |
Ref | Expression |
---|---|
yonffth.y | ⊢ 𝑌 = (Yon‘𝐶) |
yonffth.o | ⊢ 𝑂 = (oppCat‘𝐶) |
yonffth.s | ⊢ 𝑆 = (SetCat‘𝑈) |
yonffth.q | ⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
yonffth.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
yonffth.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
yonffth.h | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
Ref | Expression |
---|---|
yonffth | ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yonffth.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
2 | eqid 2737 | . 2 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | eqid 2737 | . 2 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
4 | yonffth.o | . 2 ⊢ 𝑂 = (oppCat‘𝐶) | |
5 | yonffth.s | . 2 ⊢ 𝑆 = (SetCat‘𝑈) | |
6 | eqid 2737 | . 2 ⊢ (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) = (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)) | |
7 | yonffth.q | . 2 ⊢ 𝑄 = (𝑂 FuncCat 𝑆) | |
8 | eqid 2737 | . 2 ⊢ (HomF‘𝑄) = (HomF‘𝑄) | |
9 | eqid 2737 | . 2 ⊢ ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) = ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈))) | |
10 | eqid 2737 | . 2 ⊢ (𝑂 evalF 𝑆) = (𝑂 evalF 𝑆) | |
11 | eqid 2737 | . 2 ⊢ ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) = ((HomF‘𝑄) ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) | |
12 | yonffth.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
13 | fvex 6927 | . . . 4 ⊢ (Homf ‘𝑄) ∈ V | |
14 | 13 | rnex 7940 | . . 3 ⊢ ran (Homf ‘𝑄) ∈ V |
15 | yonffth.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
16 | unexg 7769 | . . 3 ⊢ ((ran (Homf ‘𝑄) ∈ V ∧ 𝑈 ∈ 𝑉) → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) | |
17 | 14, 15, 16 | sylancr 587 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ∈ V) |
18 | yonffth.h | . 2 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
19 | ssidd 4022 | . 2 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ (ran (Homf ‘𝑄) ∪ 𝑈)) | |
20 | eqid 2737 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘((Id‘𝐶)‘𝑥)))) | |
21 | eqid 2737 | . 2 ⊢ (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) = (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf ‘𝑄) ∪ 𝑈)))) | |
22 | eqid 2737 | . 2 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) | |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22 | yonffthlem 18348 | 1 ⊢ (𝜑 → 𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∪ cun 3964 ∩ cin 3965 ⊆ wss 3966 〈cop 4640 ↦ cmpt 5234 ran crn 5694 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 1st c1st 8020 2nd c2nd 8021 tpos ctpos 8258 Basecbs 17254 Hom chom 17318 Catccat 17718 Idccid 17719 Homf chomf 17720 oppCatcoppc 17765 Invcinv 17802 Func cfunc 17914 ∘func ccofu 17916 Full cful 17965 Faith cfth 17966 Nat cnat 18005 FuncCat cfuc 18006 SetCatcsetc 18138 ×c cxpc 18233 1stF c1stf 18234 2ndF c2ndf 18235 〈,〉F cprf 18236 evalF cevlf 18275 HomFchof 18314 Yoncyon 18315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-pm 8877 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-hom 17331 df-cco 17332 df-cat 17722 df-cid 17723 df-homf 17724 df-comf 17725 df-oppc 17766 df-sect 17804 df-inv 17805 df-iso 17806 df-ssc 17867 df-resc 17868 df-subc 17869 df-func 17918 df-cofu 17920 df-full 17967 df-fth 17968 df-nat 18007 df-fuc 18008 df-setc 18139 df-xpc 18237 df-1stf 18238 df-2ndf 18239 df-prf 18240 df-evlf 18279 df-curf 18280 df-hof 18316 df-yon 18317 |
This theorem is referenced by: yoniso 18351 |
Copyright terms: Public domain | W3C validator |