MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonffth Structured version   Visualization version   GIF version

Theorem yonffth 18356
Description: The Yoneda Lemma. The Yoneda embedding, the curried Hom functor, is full and faithful, and hence is a representation of the category 𝐶 as a full subcategory of the category 𝑄 of presheaves on 𝐶. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yonffth.y 𝑌 = (Yon‘𝐶)
yonffth.o 𝑂 = (oppCat‘𝐶)
yonffth.s 𝑆 = (SetCat‘𝑈)
yonffth.q 𝑄 = (𝑂 FuncCat 𝑆)
yonffth.c (𝜑𝐶 ∈ Cat)
yonffth.u (𝜑𝑈𝑉)
yonffth.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
Assertion
Ref Expression
yonffth (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))

Proof of Theorem yonffth
Dummy variables 𝑓 𝑎 𝑔 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yonffth.y . 2 𝑌 = (Yon‘𝐶)
2 eqid 2740 . 2 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2740 . 2 (Id‘𝐶) = (Id‘𝐶)
4 yonffth.o . 2 𝑂 = (oppCat‘𝐶)
5 yonffth.s . 2 𝑆 = (SetCat‘𝑈)
6 eqid 2740 . 2 (SetCat‘(ran (Homf𝑄) ∪ 𝑈)) = (SetCat‘(ran (Homf𝑄) ∪ 𝑈))
7 yonffth.q . 2 𝑄 = (𝑂 FuncCat 𝑆)
8 eqid 2740 . 2 (HomF𝑄) = (HomF𝑄)
9 eqid 2740 . 2 ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf𝑄) ∪ 𝑈))) = ((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf𝑄) ∪ 𝑈)))
10 eqid 2740 . 2 (𝑂 evalF 𝑆) = (𝑂 evalF 𝑆)
11 eqid 2740 . 2 ((HomF𝑄) ∘func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂))) = ((HomF𝑄) ∘func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
12 yonffth.c . 2 (𝜑𝐶 ∈ Cat)
13 fvex 6935 . . . 4 (Homf𝑄) ∈ V
1413rnex 7952 . . 3 ran (Homf𝑄) ∈ V
15 yonffth.u . . 3 (𝜑𝑈𝑉)
16 unexg 7780 . . 3 ((ran (Homf𝑄) ∈ V ∧ 𝑈𝑉) → (ran (Homf𝑄) ∪ 𝑈) ∈ V)
1714, 15, 16sylancr 586 . 2 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ∈ V)
18 yonffth.h . 2 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
19 ssidd 4032 . 2 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ (ran (Homf𝑄) ∪ 𝑈))
20 eqid 2740 . 2 (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘((Id‘𝐶)‘𝑥)))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘((Id‘𝐶)‘𝑥))))
21 eqid 2740 . 2 (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf𝑄) ∪ 𝑈)))) = (Inv‘((𝑄 ×c 𝑂) FuncCat (SetCat‘(ran (Homf𝑄) ∪ 𝑈))))
22 eqid 2740 . 2 (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ (Base‘𝐶) ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22yonffthlem 18354 1 (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  wss 3976  cop 4654  cmpt 5249  ran crn 5701  cfv 6575  (class class class)co 7450  cmpo 7452  1st c1st 8030  2nd c2nd 8031  tpos ctpos 8268  Basecbs 17260  Hom chom 17324  Catccat 17724  Idccid 17725  Homf chomf 17726  oppCatcoppc 17771  Invcinv 17808   Func cfunc 17920  func ccofu 17922   Full cful 17971   Faith cfth 17972   Nat cnat 18011   FuncCat cfuc 18012  SetCatcsetc 18144   ×c cxpc 18239   1stF c1stf 18240   2ndF c2ndf 18241   ⟨,⟩F cprf 18242   evalF cevlf 18281  HomFchof 18320  Yoncyon 18321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-tpos 8269  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-map 8888  df-pm 8889  df-ixp 8958  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-fz 13570  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-hom 17337  df-cco 17338  df-cat 17728  df-cid 17729  df-homf 17730  df-comf 17731  df-oppc 17772  df-sect 17810  df-inv 17811  df-iso 17812  df-ssc 17873  df-resc 17874  df-subc 17875  df-func 17924  df-cofu 17926  df-full 17973  df-fth 17974  df-nat 18013  df-fuc 18014  df-setc 18145  df-xpc 18243  df-1stf 18244  df-2ndf 18245  df-prf 18246  df-evlf 18285  df-curf 18286  df-hof 18322  df-yon 18323
This theorem is referenced by:  yoniso  18357
  Copyright terms: Public domain W3C validator