![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znbaslem | Structured version Visualization version GIF version |
Description: Lemma for znbas 20210. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) |
Ref | Expression |
---|---|
znval2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znval2.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
znval2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znbaslem.e | ⊢ 𝐸 = Slot 𝐾 |
znbaslem.k | ⊢ 𝐾 ∈ ℕ |
znbaslem.l | ⊢ 𝐾 < ;10 |
Ref | Expression |
---|---|
znbaslem | ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑈) = (𝐸‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znval2.s | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
2 | znval2.u | . . . 4 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
3 | znval2.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
4 | eqid 2797 | . . . 4 ⊢ (le‘𝑌) = (le‘𝑌) | |
5 | 1, 2, 3, 4 | znval2 20204 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), (le‘𝑌)〉)) |
6 | 5 | fveq2d 6413 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑌) = (𝐸‘(𝑈 sSet 〈(le‘ndx), (le‘𝑌)〉))) |
7 | znbaslem.e | . . . 4 ⊢ 𝐸 = Slot 𝐾 | |
8 | znbaslem.k | . . . 4 ⊢ 𝐾 ∈ ℕ | |
9 | 7, 8 | ndxid 16207 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
10 | 8 | nnrei 11320 | . . . . 5 ⊢ 𝐾 ∈ ℝ |
11 | znbaslem.l | . . . . 5 ⊢ 𝐾 < ;10 | |
12 | 10, 11 | ltneii 10438 | . . . 4 ⊢ 𝐾 ≠ ;10 |
13 | 7, 8 | ndxarg 16206 | . . . . 5 ⊢ (𝐸‘ndx) = 𝐾 |
14 | plendx 16365 | . . . . 5 ⊢ (le‘ndx) = ;10 | |
15 | 13, 14 | neeq12i 3035 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (le‘ndx) ↔ 𝐾 ≠ ;10) |
16 | 12, 15 | mpbir 223 | . . 3 ⊢ (𝐸‘ndx) ≠ (le‘ndx) |
17 | 9, 16 | setsnid 16237 | . 2 ⊢ (𝐸‘𝑈) = (𝐸‘(𝑈 sSet 〈(le‘ndx), (le‘𝑌)〉)) |
18 | 6, 17 | syl6reqr 2850 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐸‘𝑈) = (𝐸‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 {csn 4366 〈cop 4372 class class class wbr 4841 ‘cfv 6099 (class class class)co 6876 0cc0 10222 1c1 10223 < clt 10361 ℕcn 11310 ℕ0cn0 11576 ;cdc 11779 ndxcnx 16178 sSet csts 16179 Slot cslot 16180 lecple 16271 /s cqus 16477 ~QG cqg 17900 RSpancrsp 19491 ℤringzring 20137 ℤ/nℤczn 20170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-addf 10301 ax-mulf 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-fz 12577 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-starv 16279 df-tset 16283 df-ple 16284 df-ds 16286 df-unif 16287 df-0g 16414 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-minusg 17739 df-subg 17901 df-cmn 18507 df-mgp 18803 df-ur 18815 df-ring 18862 df-cring 18863 df-subrg 19093 df-cnfld 20066 df-zring 20138 df-zn 20174 |
This theorem is referenced by: znbas2 20206 znadd 20207 znmul 20208 |
Copyright terms: Public domain | W3C validator |