MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znbaslem Structured version   Visualization version   GIF version

Theorem znbaslem 21482
Description: Lemma for znbas 21491. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 13-Jun-2019.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 3-Nov-2024.)
Hypotheses
Ref Expression
znval2.s 𝑆 = (RSpanβ€˜β„€ring)
znval2.u π‘ˆ = (β„€ring /s (β„€ring ~QG (π‘†β€˜{𝑁})))
znval2.y π‘Œ = (β„€/nβ„€β€˜π‘)
znbaslem.e 𝐸 = Slot (πΈβ€˜ndx)
znbaslem.n (πΈβ€˜ndx) β‰  (leβ€˜ndx)
Assertion
Ref Expression
znbaslem (𝑁 ∈ β„•0 β†’ (πΈβ€˜π‘ˆ) = (πΈβ€˜π‘Œ))

Proof of Theorem znbaslem
StepHypRef Expression
1 znbaslem.e . . 3 𝐸 = Slot (πΈβ€˜ndx)
2 znbaslem.n . . 3 (πΈβ€˜ndx) β‰  (leβ€˜ndx)
31, 2setsnid 17187 . 2 (πΈβ€˜π‘ˆ) = (πΈβ€˜(π‘ˆ sSet ⟨(leβ€˜ndx), (leβ€˜π‘Œ)⟩))
4 znval2.s . . . 4 𝑆 = (RSpanβ€˜β„€ring)
5 znval2.u . . . 4 π‘ˆ = (β„€ring /s (β„€ring ~QG (π‘†β€˜{𝑁})))
6 znval2.y . . . 4 π‘Œ = (β„€/nβ„€β€˜π‘)
7 eqid 2728 . . . 4 (leβ€˜π‘Œ) = (leβ€˜π‘Œ)
84, 5, 6, 7znval2 21481 . . 3 (𝑁 ∈ β„•0 β†’ π‘Œ = (π‘ˆ sSet ⟨(leβ€˜ndx), (leβ€˜π‘Œ)⟩))
98fveq2d 6906 . 2 (𝑁 ∈ β„•0 β†’ (πΈβ€˜π‘Œ) = (πΈβ€˜(π‘ˆ sSet ⟨(leβ€˜ndx), (leβ€˜π‘Œ)⟩)))
103, 9eqtr4id 2787 1 (𝑁 ∈ β„•0 β†’ (πΈβ€˜π‘ˆ) = (πΈβ€˜π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098   β‰  wne 2937  {csn 4632  βŸ¨cop 4638  β€˜cfv 6553  (class class class)co 7426  β„•0cn0 12512   sSet csts 17141  Slot cslot 17159  ndxcnx 17171  lecple 17249   /s cqus 17496   ~QG cqg 19091  RSpancrsp 21117  β„€ringczring 21386  β„€/nβ„€czn 21442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-addf 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-2 12315  df-3 12316  df-4 12317  df-5 12318  df-6 12319  df-7 12320  df-8 12321  df-9 12322  df-n0 12513  df-z 12599  df-dec 12718  df-uz 12863  df-fz 13527  df-struct 17125  df-sets 17142  df-slot 17160  df-ndx 17172  df-base 17190  df-ress 17219  df-plusg 17255  df-mulr 17256  df-starv 17257  df-tset 17261  df-ple 17262  df-ds 17264  df-unif 17265  df-0g 17432  df-mgm 18609  df-sgrp 18688  df-mnd 18704  df-grp 18907  df-minusg 18908  df-subg 19092  df-cmn 19751  df-abl 19752  df-mgp 20089  df-rng 20107  df-ur 20136  df-ring 20189  df-cring 20190  df-subrng 20497  df-subrg 20522  df-cnfld 21294  df-zring 21387  df-zn 21446
This theorem is referenced by:  znbas2  21484  znadd  21486  znmul  21488
  Copyright terms: Public domain W3C validator