Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > znval2 | Structured version Visualization version GIF version |
Description: Self-referential expression for the ℤ/nℤ structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znval2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znval2.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
znval2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
znval2.l | ⊢ ≤ = (le‘𝑌) |
Ref | Expression |
---|---|
znval2 | ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ≤ 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znval2.s | . . 3 ⊢ 𝑆 = (RSpan‘ℤring) | |
2 | znval2.u | . . 3 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
3 | znval2.y | . . 3 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
4 | eqid 2737 | . . 3 ⊢ ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) | |
5 | eqid 2737 | . . 3 ⊢ if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁)) | |
6 | eqid 2737 | . . 3 ⊢ ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) = ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))) | |
7 | 1, 2, 3, 4, 5, 6 | znval 20811 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))〉)) |
8 | znval2.l | . . . . 5 ⊢ ≤ = (le‘𝑌) | |
9 | 1, 2, 3, 4, 5, 8 | znle 20812 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ≤ = ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))) |
10 | 9 | opeq2d 4822 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 〈(le‘ndx), ≤ 〉 = 〈(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))〉) |
11 | 10 | oveq2d 7331 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑈 sSet 〈(le‘ndx), ≤ 〉) = (𝑈 sSet 〈(le‘ndx), ((((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) ∘ ≤ ) ∘ ◡((ℤRHom‘𝑈) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))))〉)) |
12 | 7, 11 | eqtr4d 2780 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝑌 = (𝑈 sSet 〈(le‘ndx), ≤ 〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ifcif 4471 {csn 4571 〈cop 4577 ◡ccnv 5606 ↾ cres 5609 ∘ ccom 5611 ‘cfv 6465 (class class class)co 7315 0cc0 10944 ≤ cle 11083 ℕ0cn0 12306 ℤcz 12392 ..^cfzo 13455 sSet csts 16934 ndxcnx 16964 lecple 17039 /s cqus 17286 ~QG cqg 18820 RSpancrsp 20505 ℤringczring 20742 ℤRHomczrh 20773 ℤ/nℤczn 20776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-addf 11023 ax-mulf 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-7 12114 df-8 12115 df-9 12116 df-n0 12307 df-z 12393 df-dec 12511 df-uz 12656 df-fz 13313 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-mulr 17046 df-starv 17047 df-tset 17051 df-ple 17052 df-ds 17054 df-unif 17055 df-0g 17222 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-minusg 18650 df-subg 18821 df-cmn 19456 df-mgp 19789 df-ur 19806 df-ring 19853 df-cring 19854 df-subrg 20094 df-cnfld 20670 df-zring 20743 df-zn 20780 |
This theorem is referenced by: znbaslem 20814 znbaslemOLD 20815 |
Copyright terms: Public domain | W3C validator |