![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znval2 | Structured version Visualization version GIF version |
Description: Self-referential expression for the β€/nβ€ structure. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znval2.s | β’ π = (RSpanββ€ring) |
znval2.u | β’ π = (β€ring /s (β€ring ~QG (πβ{π}))) |
znval2.y | β’ π = (β€/nβ€βπ) |
znval2.l | β’ β€ = (leβπ) |
Ref | Expression |
---|---|
znval2 | β’ (π β β0 β π = (π sSet β¨(leβndx), β€ β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znval2.s | . . 3 β’ π = (RSpanββ€ring) | |
2 | znval2.u | . . 3 β’ π = (β€ring /s (β€ring ~QG (πβ{π}))) | |
3 | znval2.y | . . 3 β’ π = (β€/nβ€βπ) | |
4 | eqid 2732 | . . 3 β’ ((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))) = ((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))) | |
5 | eqid 2732 | . . 3 β’ if(π = 0, β€, (0..^π)) = if(π = 0, β€, (0..^π)) | |
6 | eqid 2732 | . . 3 β’ ((((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))) β β€ ) β β‘((β€RHomβπ) βΎ if(π = 0, β€, (0..^π)))) = ((((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))) β β€ ) β β‘((β€RHomβπ) βΎ if(π = 0, β€, (0..^π)))) | |
7 | 1, 2, 3, 4, 5, 6 | znval 21306 | . 2 β’ (π β β0 β π = (π sSet β¨(leβndx), ((((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))) β β€ ) β β‘((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))))β©)) |
8 | znval2.l | . . . . 5 β’ β€ = (leβπ) | |
9 | 1, 2, 3, 4, 5, 8 | znle 21307 | . . . 4 β’ (π β β0 β β€ = ((((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))) β β€ ) β β‘((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))))) |
10 | 9 | opeq2d 4880 | . . 3 β’ (π β β0 β β¨(leβndx), β€ β© = β¨(leβndx), ((((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))) β β€ ) β β‘((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))))β©) |
11 | 10 | oveq2d 7427 | . 2 β’ (π β β0 β (π sSet β¨(leβndx), β€ β©) = (π sSet β¨(leβndx), ((((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))) β β€ ) β β‘((β€RHomβπ) βΎ if(π = 0, β€, (0..^π))))β©)) |
12 | 7, 11 | eqtr4d 2775 | 1 β’ (π β β0 β π = (π sSet β¨(leβndx), β€ β©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 ifcif 4528 {csn 4628 β¨cop 4634 β‘ccnv 5675 βΎ cres 5678 β ccom 5680 βcfv 6543 (class class class)co 7411 0cc0 11112 β€ cle 11253 β0cn0 12476 β€cz 12562 ..^cfzo 13631 sSet csts 17100 ndxcnx 17130 lecple 17208 /s cqus 17455 ~QG cqg 19038 RSpancrsp 20929 β€ringczring 21217 β€RHomczrh 21268 β€/nβ€czn 21271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-subg 19039 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-cring 20130 df-subrng 20434 df-subrg 20459 df-cnfld 21145 df-zring 21218 df-zn 21275 |
This theorem is referenced by: znbaslem 21309 znbaslemOLD 21310 |
Copyright terms: Public domain | W3C validator |