| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsfi | GIF version | ||
| Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsfi | ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9319 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 2re 9121 | . . . 4 ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 4 | 1lt2 9221 | . . . 4 ⊢ 1 < 2 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 1 < 2) |
| 6 | expnbnd 10825 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) | |
| 7 | 1, 3, 5, 6 | syl3anc 1250 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) |
| 8 | 0zd 9399 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 0 ∈ ℤ) | |
| 9 | simprl 529 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ) | |
| 10 | 9 | nnnn0d 9363 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ0) |
| 11 | 10 | nn0zd 9508 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℤ) |
| 12 | fzofig 10594 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (0..^𝑚) ∈ Fin) | |
| 13 | 8, 11, 12 | syl2anc 411 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (0..^𝑚) ∈ Fin) |
| 14 | simpl 109 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℕ0) | |
| 15 | nn0uz 9698 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
| 16 | 14, 15 | eleqtrdi 2299 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (ℤ≥‘0)) |
| 17 | 2nn 9213 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 18 | 17 | a1i 9 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 2 ∈ ℕ) |
| 19 | 18, 10 | nnexpcld 10857 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℕ) |
| 20 | 19 | nnzd 9509 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℤ) |
| 21 | simprr 531 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 < (2↑𝑚)) | |
| 22 | elfzo2 10287 | . . . . 5 ⊢ (𝑁 ∈ (0..^(2↑𝑚)) ↔ (𝑁 ∈ (ℤ≥‘0) ∧ (2↑𝑚) ∈ ℤ ∧ 𝑁 < (2↑𝑚))) | |
| 23 | 16, 20, 21, 22 | syl3anbrc 1184 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (0..^(2↑𝑚))) |
| 24 | 14 | nn0zd 9508 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℤ) |
| 25 | bitsfzo 12336 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) | |
| 26 | 24, 10, 25 | syl2anc 411 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) |
| 27 | 23, 26 | mpbid 147 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ⊆ (0..^𝑚)) |
| 28 | elfzonn0 10327 | . . . . 5 ⊢ (𝑛 ∈ (0..^𝑚) → 𝑛 ∈ ℕ0) | |
| 29 | bitsdc 12328 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → DECID 𝑛 ∈ (bits‘𝑁)) | |
| 30 | 24, 28, 29 | syl2an 289 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) ∧ 𝑛 ∈ (0..^𝑚)) → DECID 𝑛 ∈ (bits‘𝑁)) |
| 31 | 30 | ralrimiva 2580 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → ∀𝑛 ∈ (0..^𝑚)DECID 𝑛 ∈ (bits‘𝑁)) |
| 32 | ssfidc 7048 | . . 3 ⊢ (((0..^𝑚) ∈ Fin ∧ (bits‘𝑁) ⊆ (0..^𝑚) ∧ ∀𝑛 ∈ (0..^𝑚)DECID 𝑛 ∈ (bits‘𝑁)) → (bits‘𝑁) ∈ Fin) | |
| 33 | 13, 27, 31, 32 | syl3anc 1250 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ∈ Fin) |
| 34 | 7, 33 | rexlimddv 2629 | 1 ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 836 ∈ wcel 2177 ∀wral 2485 ∃wrex 2486 ⊆ wss 3170 class class class wbr 4050 ‘cfv 5279 (class class class)co 5956 Fincfn 6839 ℝcr 7939 0cc0 7940 1c1 7941 < clt 8122 ℕcn 9051 2c2 9102 ℕ0cn0 9310 ℤcz 9387 ℤ≥cuz 9663 ..^cfzo 10279 ↑cexp 10700 bitscbits 12321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-1o 6514 df-er 6632 df-en 6840 df-fin 6842 df-sup 7100 df-inf 7101 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-fz 10146 df-fzo 10280 df-fl 10430 df-mod 10485 df-seqfrec 10610 df-exp 10701 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-dvds 12169 df-bits 12322 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |