| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsfi | GIF version | ||
| Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsfi | ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9366 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 2re 9168 | . . . 4 ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 4 | 1lt2 9268 | . . . 4 ⊢ 1 < 2 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 1 < 2) |
| 6 | expnbnd 10872 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) | |
| 7 | 1, 3, 5, 6 | syl3anc 1271 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) |
| 8 | 0zd 9446 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 0 ∈ ℤ) | |
| 9 | simprl 529 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ) | |
| 10 | 9 | nnnn0d 9410 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ0) |
| 11 | 10 | nn0zd 9555 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℤ) |
| 12 | fzofig 10641 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (0..^𝑚) ∈ Fin) | |
| 13 | 8, 11, 12 | syl2anc 411 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (0..^𝑚) ∈ Fin) |
| 14 | simpl 109 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℕ0) | |
| 15 | nn0uz 9745 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
| 16 | 14, 15 | eleqtrdi 2322 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (ℤ≥‘0)) |
| 17 | 2nn 9260 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 18 | 17 | a1i 9 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 2 ∈ ℕ) |
| 19 | 18, 10 | nnexpcld 10904 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℕ) |
| 20 | 19 | nnzd 9556 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℤ) |
| 21 | simprr 531 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 < (2↑𝑚)) | |
| 22 | elfzo2 10334 | . . . . 5 ⊢ (𝑁 ∈ (0..^(2↑𝑚)) ↔ (𝑁 ∈ (ℤ≥‘0) ∧ (2↑𝑚) ∈ ℤ ∧ 𝑁 < (2↑𝑚))) | |
| 23 | 16, 20, 21, 22 | syl3anbrc 1205 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (0..^(2↑𝑚))) |
| 24 | 14 | nn0zd 9555 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℤ) |
| 25 | bitsfzo 12452 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) | |
| 26 | 24, 10, 25 | syl2anc 411 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) |
| 27 | 23, 26 | mpbid 147 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ⊆ (0..^𝑚)) |
| 28 | elfzonn0 10374 | . . . . 5 ⊢ (𝑛 ∈ (0..^𝑚) → 𝑛 ∈ ℕ0) | |
| 29 | bitsdc 12444 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → DECID 𝑛 ∈ (bits‘𝑁)) | |
| 30 | 24, 28, 29 | syl2an 289 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) ∧ 𝑛 ∈ (0..^𝑚)) → DECID 𝑛 ∈ (bits‘𝑁)) |
| 31 | 30 | ralrimiva 2603 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → ∀𝑛 ∈ (0..^𝑚)DECID 𝑛 ∈ (bits‘𝑁)) |
| 32 | ssfidc 7087 | . . 3 ⊢ (((0..^𝑚) ∈ Fin ∧ (bits‘𝑁) ⊆ (0..^𝑚) ∧ ∀𝑛 ∈ (0..^𝑚)DECID 𝑛 ∈ (bits‘𝑁)) → (bits‘𝑁) ∈ Fin) | |
| 33 | 13, 27, 31, 32 | syl3anc 1271 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ∈ Fin) |
| 34 | 7, 33 | rexlimddv 2653 | 1 ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 class class class wbr 4082 ‘cfv 5314 (class class class)co 5994 Fincfn 6877 ℝcr 7986 0cc0 7987 1c1 7988 < clt 8169 ℕcn 9098 2c2 9149 ℕ0cn0 9357 ℤcz 9434 ℤ≥cuz 9710 ..^cfzo 10326 ↑cexp 10747 bitscbits 12437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-1o 6552 df-er 6670 df-en 6878 df-fin 6880 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-q 9803 df-rp 9838 df-fz 10193 df-fzo 10327 df-fl 10477 df-mod 10532 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-dvds 12285 df-bits 12438 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |