| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsfi | GIF version | ||
| Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsfi | ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re 9277 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 2 | 2re 9079 | . . . 4 ⊢ 2 ∈ ℝ | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
| 4 | 1lt2 9179 | . . . 4 ⊢ 1 < 2 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 1 < 2) |
| 6 | expnbnd 10774 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) | |
| 7 | 1, 3, 5, 6 | syl3anc 1249 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) |
| 8 | 0zd 9357 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 0 ∈ ℤ) | |
| 9 | simprl 529 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ) | |
| 10 | 9 | nnnn0d 9321 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ0) |
| 11 | 10 | nn0zd 9465 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℤ) |
| 12 | fzofig 10543 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (0..^𝑚) ∈ Fin) | |
| 13 | 8, 11, 12 | syl2anc 411 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (0..^𝑚) ∈ Fin) |
| 14 | simpl 109 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℕ0) | |
| 15 | nn0uz 9655 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
| 16 | 14, 15 | eleqtrdi 2289 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (ℤ≥‘0)) |
| 17 | 2nn 9171 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
| 18 | 17 | a1i 9 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 2 ∈ ℕ) |
| 19 | 18, 10 | nnexpcld 10806 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℕ) |
| 20 | 19 | nnzd 9466 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℤ) |
| 21 | simprr 531 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 < (2↑𝑚)) | |
| 22 | elfzo2 10244 | . . . . 5 ⊢ (𝑁 ∈ (0..^(2↑𝑚)) ↔ (𝑁 ∈ (ℤ≥‘0) ∧ (2↑𝑚) ∈ ℤ ∧ 𝑁 < (2↑𝑚))) | |
| 23 | 16, 20, 21, 22 | syl3anbrc 1183 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (0..^(2↑𝑚))) |
| 24 | 14 | nn0zd 9465 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℤ) |
| 25 | bitsfzo 12139 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) | |
| 26 | 24, 10, 25 | syl2anc 411 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) |
| 27 | 23, 26 | mpbid 147 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ⊆ (0..^𝑚)) |
| 28 | elfzonn0 10281 | . . . . 5 ⊢ (𝑛 ∈ (0..^𝑚) → 𝑛 ∈ ℕ0) | |
| 29 | bitsdc 12131 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → DECID 𝑛 ∈ (bits‘𝑁)) | |
| 30 | 24, 28, 29 | syl2an 289 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) ∧ 𝑛 ∈ (0..^𝑚)) → DECID 𝑛 ∈ (bits‘𝑁)) |
| 31 | 30 | ralrimiva 2570 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → ∀𝑛 ∈ (0..^𝑚)DECID 𝑛 ∈ (bits‘𝑁)) |
| 32 | ssfidc 7007 | . . 3 ⊢ (((0..^𝑚) ∈ Fin ∧ (bits‘𝑁) ⊆ (0..^𝑚) ∧ ∀𝑛 ∈ (0..^𝑚)DECID 𝑛 ∈ (bits‘𝑁)) → (bits‘𝑁) ∈ Fin) | |
| 33 | 13, 27, 31, 32 | syl3anc 1249 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ∈ Fin) |
| 34 | 7, 33 | rexlimddv 2619 | 1 ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 ∈ wcel 2167 ∀wral 2475 ∃wrex 2476 ⊆ wss 3157 class class class wbr 4034 ‘cfv 5259 (class class class)co 5925 Fincfn 6808 ℝcr 7897 0cc0 7898 1c1 7899 < clt 8080 ℕcn 9009 2c2 9060 ℕ0cn0 9268 ℤcz 9345 ℤ≥cuz 9620 ..^cfzo 10236 ↑cexp 10649 bitscbits 12124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-fz 10103 df-fzo 10237 df-fl 10379 df-mod 10434 df-seqfrec 10559 df-exp 10650 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-dvds 11972 df-bits 12125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |