| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg5gricstgr3 | Structured version Visualization version GIF version | ||
| Description: Each closed neighborhood in a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is isomorphic to a 3-star. (Contributed by AV, 13-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpg5gricstgr3.g | ⊢ 𝐺 = (5 gPetersenGr 𝐾) |
| Ref | Expression |
|---|---|
| gpg5gricstgr3 | ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5eluz3 12849 | . . . 4 ⊢ 5 ∈ (ℤ≥‘3) | |
| 2 | 2z 12572 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 3 | fzval3 13702 | . . . . . . . 8 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ (1...2) = (1..^(2 + 1)) |
| 5 | 2p1e3 12330 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 6 | 5 | oveq2i 7401 | . . . . . . 7 ⊢ (1..^(2 + 1)) = (1..^3) |
| 7 | ceil5half3 47345 | . . . . . . . . 9 ⊢ (⌈‘(5 / 2)) = 3 | |
| 8 | 7 | eqcomi 2739 | . . . . . . . 8 ⊢ 3 = (⌈‘(5 / 2)) |
| 9 | 8 | oveq2i 7401 | . . . . . . 7 ⊢ (1..^3) = (1..^(⌈‘(5 / 2))) |
| 10 | 4, 6, 9 | 3eqtri 2757 | . . . . . 6 ⊢ (1...2) = (1..^(⌈‘(5 / 2))) |
| 11 | 10 | eleq2i 2821 | . . . . 5 ⊢ (𝐾 ∈ (1...2) ↔ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 12 | 11 | biimpi 216 | . . . 4 ⊢ (𝐾 ∈ (1...2) → 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 13 | gpg5gricstgr3.g | . . . . 5 ⊢ 𝐺 = (5 gPetersenGr 𝐾) | |
| 14 | gpgusgra 48052 | . . . . 5 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 𝐾) ∈ USGraph) | |
| 15 | 13, 14 | eqeltrid 2833 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) → 𝐺 ∈ USGraph) |
| 16 | 1, 12, 15 | sylancr 587 | . . 3 ⊢ (𝐾 ∈ (1...2) → 𝐺 ∈ USGraph) |
| 17 | 16 | anim1i 615 | . 2 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ (Vtx‘𝐺))) |
| 18 | eqidd 2731 | . . 3 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → 5 = 5) | |
| 19 | 12 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 20 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → 𝑉 ∈ (Vtx‘𝐺)) | |
| 21 | eqid 2730 | . . . 4 ⊢ (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2))) | |
| 22 | eqid 2730 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 23 | eqid 2730 | . . . 4 ⊢ (𝐺 NeighbVtx 𝑉) = (𝐺 NeighbVtx 𝑉) | |
| 24 | eqid 2730 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 25 | 21, 13, 22, 23, 24 | gpg5nbgr3star 48076 | . . 3 ⊢ ((5 = 5 ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2))) ∧ 𝑉 ∈ (Vtx‘𝐺)) → ((♯‘(𝐺 NeighbVtx 𝑉)) = 3 ∧ ∀𝑥 ∈ (𝐺 NeighbVtx 𝑉)∀𝑦 ∈ (𝐺 NeighbVtx 𝑉){𝑥, 𝑦} ∉ (Edg‘𝐺))) |
| 26 | 18, 19, 20, 25 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → ((♯‘(𝐺 NeighbVtx 𝑉)) = 3 ∧ ∀𝑥 ∈ (𝐺 NeighbVtx 𝑉)∀𝑦 ∈ (𝐺 NeighbVtx 𝑉){𝑥, 𝑦} ∉ (Edg‘𝐺))) |
| 27 | eqid 2730 | . . 3 ⊢ (𝐺 ClNeighbVtx 𝑉) = (𝐺 ClNeighbVtx 𝑉) | |
| 28 | 3nn0 12467 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 29 | eqid 2730 | . . 3 ⊢ (StarGr‘3) = (StarGr‘3) | |
| 30 | eqid 2730 | . . 3 ⊢ (Vtx‘(StarGr‘3)) = (Vtx‘(StarGr‘3)) | |
| 31 | 22, 23, 27, 28, 29, 30, 24 | isubgr3stgr 47978 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ (Vtx‘𝐺)) → (((♯‘(𝐺 NeighbVtx 𝑉)) = 3 ∧ ∀𝑥 ∈ (𝐺 NeighbVtx 𝑉)∀𝑦 ∈ (𝐺 NeighbVtx 𝑉){𝑥, 𝑦} ∉ (Edg‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3))) |
| 32 | 17, 26, 31 | sylc 65 | 1 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 ∀wral 3045 {cpr 4594 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1c1 11076 + caddc 11078 / cdiv 11842 2c2 12248 3c3 12249 5c5 12251 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 ..^cfzo 13622 ⌈cceil 13760 ♯chash 14302 Vtxcvtx 28930 Edgcedg 28981 USGraphcusgr 29083 NeighbVtx cnbgr 29266 ClNeighbVtx cclnbgr 47823 ISubGr cisubgr 47864 ≃𝑔𝑟 cgric 47880 StarGrcstgr 47954 gPetersenGr cgpg 48035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-ceil 13762 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-edgf 28923 df-vtx 28932 df-iedg 28933 df-edg 28982 df-uhgr 28992 df-ushgr 28993 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-subgr 29202 df-nbgr 29267 df-clnbgr 47824 df-isubgr 47865 df-grim 47882 df-gric 47885 df-stgr 47955 df-gpg 48036 |
| This theorem is referenced by: gpg5grlic 48088 |
| Copyright terms: Public domain | W3C validator |