| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg5gricstgr3 | Structured version Visualization version GIF version | ||
| Description: Each closed neighborhood in a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is isomorphic to a 3-star. (Contributed by AV, 13-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpg5gricstgr3.g | ⊢ 𝐺 = (5 gPetersenGr 𝐾) |
| Ref | Expression |
|---|---|
| gpg5gricstgr3 | ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5eluz3 12781 | . . . 4 ⊢ 5 ∈ (ℤ≥‘3) | |
| 2 | 2z 12504 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 3 | fzval3 13634 | . . . . . . . 8 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ (1...2) = (1..^(2 + 1)) |
| 5 | 2p1e3 12262 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 6 | 5 | oveq2i 7357 | . . . . . . 7 ⊢ (1..^(2 + 1)) = (1..^3) |
| 7 | ceil5half3 47439 | . . . . . . . . 9 ⊢ (⌈‘(5 / 2)) = 3 | |
| 8 | 7 | eqcomi 2740 | . . . . . . . 8 ⊢ 3 = (⌈‘(5 / 2)) |
| 9 | 8 | oveq2i 7357 | . . . . . . 7 ⊢ (1..^3) = (1..^(⌈‘(5 / 2))) |
| 10 | 4, 6, 9 | 3eqtri 2758 | . . . . . 6 ⊢ (1...2) = (1..^(⌈‘(5 / 2))) |
| 11 | 10 | eleq2i 2823 | . . . . 5 ⊢ (𝐾 ∈ (1...2) ↔ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 12 | 11 | biimpi 216 | . . . 4 ⊢ (𝐾 ∈ (1...2) → 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 13 | gpg5gricstgr3.g | . . . . 5 ⊢ 𝐺 = (5 gPetersenGr 𝐾) | |
| 14 | gpgusgra 48156 | . . . . 5 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 𝐾) ∈ USGraph) | |
| 15 | 13, 14 | eqeltrid 2835 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) → 𝐺 ∈ USGraph) |
| 16 | 1, 12, 15 | sylancr 587 | . . 3 ⊢ (𝐾 ∈ (1...2) → 𝐺 ∈ USGraph) |
| 17 | 16 | anim1i 615 | . 2 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ (Vtx‘𝐺))) |
| 18 | eqidd 2732 | . . 3 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → 5 = 5) | |
| 19 | 12 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 20 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → 𝑉 ∈ (Vtx‘𝐺)) | |
| 21 | eqid 2731 | . . . 4 ⊢ (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2))) | |
| 22 | eqid 2731 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 23 | eqid 2731 | . . . 4 ⊢ (𝐺 NeighbVtx 𝑉) = (𝐺 NeighbVtx 𝑉) | |
| 24 | eqid 2731 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 25 | 21, 13, 22, 23, 24 | gpg5nbgr3star 48180 | . . 3 ⊢ ((5 = 5 ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2))) ∧ 𝑉 ∈ (Vtx‘𝐺)) → ((♯‘(𝐺 NeighbVtx 𝑉)) = 3 ∧ ∀𝑥 ∈ (𝐺 NeighbVtx 𝑉)∀𝑦 ∈ (𝐺 NeighbVtx 𝑉){𝑥, 𝑦} ∉ (Edg‘𝐺))) |
| 26 | 18, 19, 20, 25 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → ((♯‘(𝐺 NeighbVtx 𝑉)) = 3 ∧ ∀𝑥 ∈ (𝐺 NeighbVtx 𝑉)∀𝑦 ∈ (𝐺 NeighbVtx 𝑉){𝑥, 𝑦} ∉ (Edg‘𝐺))) |
| 27 | eqid 2731 | . . 3 ⊢ (𝐺 ClNeighbVtx 𝑉) = (𝐺 ClNeighbVtx 𝑉) | |
| 28 | 3nn0 12399 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 29 | eqid 2731 | . . 3 ⊢ (StarGr‘3) = (StarGr‘3) | |
| 30 | eqid 2731 | . . 3 ⊢ (Vtx‘(StarGr‘3)) = (Vtx‘(StarGr‘3)) | |
| 31 | 22, 23, 27, 28, 29, 30, 24 | isubgr3stgr 48074 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ (Vtx‘𝐺)) → (((♯‘(𝐺 NeighbVtx 𝑉)) = 3 ∧ ∀𝑥 ∈ (𝐺 NeighbVtx 𝑉)∀𝑦 ∈ (𝐺 NeighbVtx 𝑉){𝑥, 𝑦} ∉ (Edg‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3))) |
| 32 | 17, 26, 31 | sylc 65 | 1 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 ∀wral 3047 {cpr 4575 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 1c1 11007 + caddc 11009 / cdiv 11774 2c2 12180 3c3 12181 5c5 12183 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 ..^cfzo 13554 ⌈cceil 13695 ♯chash 14237 Vtxcvtx 28974 Edgcedg 29025 USGraphcusgr 29127 NeighbVtx cnbgr 29310 ClNeighbVtx cclnbgr 47917 ISubGr cisubgr 47959 ≃𝑔𝑟 cgric 47975 StarGrcstgr 48050 gPetersenGr cgpg 48139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-fl 13696 df-ceil 13697 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28967 df-vtx 28976 df-iedg 28977 df-edg 29026 df-uhgr 29036 df-ushgr 29037 df-upgr 29060 df-umgr 29061 df-uspgr 29128 df-usgr 29129 df-subgr 29246 df-nbgr 29311 df-clnbgr 47918 df-isubgr 47960 df-grim 47977 df-gric 47980 df-stgr 48051 df-gpg 48140 |
| This theorem is referenced by: gpg5grlim 48192 gpg5grlic 48193 |
| Copyright terms: Public domain | W3C validator |