| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpg5gricstgr3 | Structured version Visualization version GIF version | ||
| Description: Each closed neighborhood in a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), which is either the Petersen graph G(5,2) or the 5-prism G(5,1), is isomorphic to a 3-star. (Contributed by AV, 13-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpg5gricstgr3.g | ⊢ 𝐺 = (5 gPetersenGr 𝐾) |
| Ref | Expression |
|---|---|
| gpg5gricstgr3 | ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5eluz3 12899 | . . . 4 ⊢ 5 ∈ (ℤ≥‘3) | |
| 2 | 2z 12622 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 3 | fzval3 13748 | . . . . . . . 8 ⊢ (2 ∈ ℤ → (1...2) = (1..^(2 + 1))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7 ⊢ (1...2) = (1..^(2 + 1)) |
| 5 | 2p1e3 12380 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 6 | 5 | oveq2i 7414 | . . . . . . 7 ⊢ (1..^(2 + 1)) = (1..^3) |
| 7 | ceil5half3 47317 | . . . . . . . . 9 ⊢ (⌈‘(5 / 2)) = 3 | |
| 8 | 7 | eqcomi 2744 | . . . . . . . 8 ⊢ 3 = (⌈‘(5 / 2)) |
| 9 | 8 | oveq2i 7414 | . . . . . . 7 ⊢ (1..^3) = (1..^(⌈‘(5 / 2))) |
| 10 | 4, 6, 9 | 3eqtri 2762 | . . . . . 6 ⊢ (1...2) = (1..^(⌈‘(5 / 2))) |
| 11 | 10 | eleq2i 2826 | . . . . 5 ⊢ (𝐾 ∈ (1...2) ↔ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 12 | 11 | biimpi 216 | . . . 4 ⊢ (𝐾 ∈ (1...2) → 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 13 | gpg5gricstgr3.g | . . . . 5 ⊢ 𝐺 = (5 gPetersenGr 𝐾) | |
| 14 | gpgusgra 48009 | . . . . 5 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) → (5 gPetersenGr 𝐾) ∈ USGraph) | |
| 15 | 13, 14 | eqeltrid 2838 | . . . 4 ⊢ ((5 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2)))) → 𝐺 ∈ USGraph) |
| 16 | 1, 12, 15 | sylancr 587 | . . 3 ⊢ (𝐾 ∈ (1...2) → 𝐺 ∈ USGraph) |
| 17 | 16 | anim1i 615 | . 2 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ (Vtx‘𝐺))) |
| 18 | eqidd 2736 | . . 3 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → 5 = 5) | |
| 19 | 12 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → 𝐾 ∈ (1..^(⌈‘(5 / 2)))) |
| 20 | simpr 484 | . . 3 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → 𝑉 ∈ (Vtx‘𝐺)) | |
| 21 | eqid 2735 | . . . 4 ⊢ (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2))) | |
| 22 | eqid 2735 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 23 | eqid 2735 | . . . 4 ⊢ (𝐺 NeighbVtx 𝑉) = (𝐺 NeighbVtx 𝑉) | |
| 24 | eqid 2735 | . . . 4 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 25 | 21, 13, 22, 23, 24 | gpg5nbgr3star 48031 | . . 3 ⊢ ((5 = 5 ∧ 𝐾 ∈ (1..^(⌈‘(5 / 2))) ∧ 𝑉 ∈ (Vtx‘𝐺)) → ((♯‘(𝐺 NeighbVtx 𝑉)) = 3 ∧ ∀𝑥 ∈ (𝐺 NeighbVtx 𝑉)∀𝑦 ∈ (𝐺 NeighbVtx 𝑉){𝑥, 𝑦} ∉ (Edg‘𝐺))) |
| 26 | 18, 19, 20, 25 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → ((♯‘(𝐺 NeighbVtx 𝑉)) = 3 ∧ ∀𝑥 ∈ (𝐺 NeighbVtx 𝑉)∀𝑦 ∈ (𝐺 NeighbVtx 𝑉){𝑥, 𝑦} ∉ (Edg‘𝐺))) |
| 27 | eqid 2735 | . . 3 ⊢ (𝐺 ClNeighbVtx 𝑉) = (𝐺 ClNeighbVtx 𝑉) | |
| 28 | 3nn0 12517 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 29 | eqid 2735 | . . 3 ⊢ (StarGr‘3) = (StarGr‘3) | |
| 30 | eqid 2735 | . . 3 ⊢ (Vtx‘(StarGr‘3)) = (Vtx‘(StarGr‘3)) | |
| 31 | 22, 23, 27, 28, 29, 30, 24 | isubgr3stgr 47935 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑉 ∈ (Vtx‘𝐺)) → (((♯‘(𝐺 NeighbVtx 𝑉)) = 3 ∧ ∀𝑥 ∈ (𝐺 NeighbVtx 𝑉)∀𝑦 ∈ (𝐺 NeighbVtx 𝑉){𝑥, 𝑦} ∉ (Edg‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3))) |
| 32 | 17, 26, 31 | sylc 65 | 1 ⊢ ((𝐾 ∈ (1...2) ∧ 𝑉 ∈ (Vtx‘𝐺)) → (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑉)) ≃𝑔𝑟 (StarGr‘3)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∉ wnel 3036 ∀wral 3051 {cpr 4603 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 1c1 11128 + caddc 11130 / cdiv 11892 2c2 12293 3c3 12294 5c5 12296 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13522 ..^cfzo 13669 ⌈cceil 13806 ♯chash 14346 Vtxcvtx 28921 Edgcedg 28972 USGraphcusgr 29074 NeighbVtx cnbgr 29257 ClNeighbVtx cclnbgr 47780 ISubGr cisubgr 47821 ≃𝑔𝑟 cgric 47837 StarGrcstgr 47911 gPetersenGr cgpg 47992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-xnn0 12573 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-ico 13366 df-fz 13523 df-fzo 13670 df-fl 13807 df-ceil 13808 df-mod 13885 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-dvds 16271 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-edgf 28914 df-vtx 28923 df-iedg 28924 df-edg 28973 df-uhgr 28983 df-ushgr 28984 df-upgr 29007 df-umgr 29008 df-uspgr 29075 df-usgr 29076 df-subgr 29193 df-nbgr 29258 df-clnbgr 47781 df-isubgr 47822 df-grim 47839 df-gric 47842 df-stgr 47912 df-gpg 47993 |
| This theorem is referenced by: gpg5grlic 48041 |
| Copyright terms: Public domain | W3C validator |