![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crhmsubc | Structured version Visualization version GIF version |
Description: According to df-subc 17768, the subcategories (SubcatβπΆ) of a category πΆ are subsets of the homomorphisms of πΆ (see subcssc 17799 and subcss2 17802). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) |
Ref | Expression |
---|---|
crhmsubc.c | β’ πΆ = (π β© CRing) |
crhmsubc.j | β’ π½ = (π β πΆ, π β πΆ β¦ (π RingHom π )) |
Ref | Expression |
---|---|
crhmsubc | β’ (π β π β π½ β (Subcatβ(RingCatβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 20150 | . . 3 β’ (π β CRing β π β Ring) | |
2 | 1 | rgen 3057 | . 2 β’ βπ β CRing π β Ring |
3 | crhmsubc.c | . 2 β’ πΆ = (π β© CRing) | |
4 | crhmsubc.j | . 2 β’ π½ = (π β πΆ, π β πΆ β¦ (π RingHom π )) | |
5 | 2, 3, 4 | srhmsubc 20576 | 1 β’ (π β π β π½ β (Subcatβ(RingCatβπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β© cin 3942 βcfv 6537 (class class class)co 7405 β cmpo 7407 Subcatcsubc 17765 Ringcrg 20138 CRingccrg 20139 RingHom crh 20371 RingCatcringc 20541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-hom 17230 df-cco 17231 df-0g 17396 df-cat 17621 df-cid 17622 df-homf 17623 df-ssc 17766 df-resc 17767 df-subc 17768 df-estrc 18086 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-grp 18866 df-ghm 19139 df-mgp 20040 df-ur 20087 df-ring 20140 df-cring 20141 df-rhm 20374 df-ringc 20542 |
This theorem is referenced by: cringcat 20579 |
Copyright terms: Public domain | W3C validator |