MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgioo4 Structured version   Visualization version   GIF version

Theorem tgioo4 24669
Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Assertion
Ref Expression
tgioo4 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)

Proof of Theorem tgioo4
StepHypRef Expression
1 eqid 2729 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21tgioo2 24667 1 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ran crn 5632  cfv 6499  (class class class)co 7369  cr 11043  (,)cioo 13282  t crest 17359  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-fz 13445  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-bases 22809
This theorem is referenced by:  tgioo3  24670  rellycmp  24832  evth  24834  evth2  24835  lebnumlem2  24837  resscdrg  25234  retopn  25255  cncombf  25535  cnmbf  25536  dvmptresicc  25793  dvcjbr  25829  rolle  25870  cmvth  25871  mvth  25873  dvlip  25874  dvlipcn  25875  dvlip2  25876  c1liplem1  25877  dvgt0lem1  25883  dvle  25888  dvivthlem1  25889  dvne0  25892  lhop1lem  25894  lhop2  25896  lhop  25897  dvcnvrelem1  25898  dvcnvre  25900  dvcvx  25901  dvfsumle  25902  dvfsumabs  25905  dvfsumlem2  25909  ftc1cn  25926  ftc2  25927  ftc2ditglem  25928  itgparts  25930  itgsubstlem  25931  itgpowd  25933  taylthlem2  26258  efcvx  26335  dvloglem  26533  logdmopn  26534  advlog  26539  advlogexp  26540  logccv  26548  loglesqrt  26647  lgamgulmlem2  26916  log2sumbnd  27431  rmulccn  33891  raddcn  33892  ftc2re  34562  knoppcnlem10  36463  knoppcnlem11  36464  broucube  37621  ftc1cnnc  37659  ftc2nc  37669  dvasin  37671  dvacos  37672  dvreasin  37673  dvreacos  37674  areacirclem1  37675  areacirc  37680  dvrelog2  42025  dvrelog3  42026  aks4d1p1p6  42034  redvmptabs  42321  readvrec2  42322  resuppsinopn  42324  readvcot  42325  lhe4.4ex1a  44291  refsumcn  44997  xrtgcntopre  45447  climreeq  45584  limcresiooub  45613  limcresioolb  45614  lptioo2cn  45616  lptioo1cn  45617  cncfiooicclem1  45864  jumpncnp  45869  fperdvper  45890  dvresioo  45892  dvbdfbdioolem1  45899  itgsin0pilem1  45921  itgsinexplem1  45925  itgcoscmulx  45940  itgsubsticclem  45946  itgiccshift  45951  itgperiod  45952  itgsbtaddcnst  45953  dirkeritg  46073  dirkercncflem2  46075  dirkercncflem3  46076  dirkercncflem4  46077  dirkercncf  46078  fourierdlem28  46106  fourierdlem32  46110  fourierdlem33  46111  fourierdlem39  46117  fourierdlem56  46133  fourierdlem57  46134  fourierdlem58  46135  fourierdlem59  46136  fourierdlem60  46137  fourierdlem61  46138  fourierdlem62  46139  fourierdlem68  46145  fourierdlem72  46149  fourierdlem73  46150  fourierdlem74  46151  fourierdlem75  46152  fourierdlem80  46157  fourierdlem94  46171  fourierdlem103  46180  fourierdlem104  46181  fourierdlem113  46190  fouriercnp  46197  fouriersw  46202  fouriercn  46203  etransclem2  46207  etransclem23  46228  etransclem35  46240  etransclem38  46243  etransclem39  46244  etransclem44  46249  etransclem45  46250  etransclem46  46251  etransclem47  46252
  Copyright terms: Public domain W3C validator