Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsummulc1 | Structured version Visualization version GIF version |
Description: A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsummulc2.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsummulc2.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
fsummulc2.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
fsummulc1 | ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsummulc2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | fsummulc2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
3 | fsummulc2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
4 | 1, 2, 3 | fsummulc2 15565 | . 2 ⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
5 | 1, 3 | fsumcl 15514 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
6 | 5, 2 | mulcomd 11066 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (𝐶 · Σ𝑘 ∈ 𝐴 𝐵)) |
7 | 2 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
8 | 3, 7 | mulcomd 11066 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
9 | 8 | sumeq2dv 15484 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
10 | 4, 6, 9 | 3eqtr4d 2787 | 1 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7313 Fincfn 8779 ℂcc 10939 · cmul 10946 Σcsu 15466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-sup 9269 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-n0 12304 df-z 12390 df-uz 12653 df-rp 12801 df-fz 13310 df-fzo 13453 df-seq 13792 df-exp 13853 df-hash 14115 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-clim 15266 df-sum 15467 |
This theorem is referenced by: fsumdivc 15567 fsum2mul 15570 binomlem 15610 geoserg 15647 geo2sum 15654 mertenslem1 15665 binomfallfaclem2 15819 csbren 24634 plymullem1 25446 aalioulem1 25563 aaliou3lem6 25579 ftalem1 26293 ftalem5 26297 musumsum 26412 muinv 26413 fsumdvdsmul 26415 vmadivsum 26701 dchrisumlem2 26709 dchrmusum2 26713 dchrvmasumiflem2 26721 rpvmasum2 26731 dchrisum0lem1 26735 dchrisum0lem2a 26736 mulogsumlem 26750 mulog2sumlem3 26755 vmalogdivsum 26758 2vmadivsumlem 26759 logsqvma 26761 selberg3lem1 26776 selberg4 26780 pntrlog2bndlem5 26800 eulerpartlemgs2 32453 breprexplemc 32718 breprexpnat 32720 circlemeth 32726 hgt750lemb 32742 aks4d1p1p1 40283 jm2.23 41029 fsummulc1f 43356 dvnprodlem2 43732 dirkertrigeqlem2 43884 etransclem23 44042 etransclem46 44065 hoidmvlelem2 44379 nn0sumshdiglemA 46224 nn0sumshdiglemB 46225 nn0mullong 46230 aacllem 46764 amgmlemALT 46766 |
Copyright terms: Public domain | W3C validator |