![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsummulc1 | Structured version Visualization version GIF version |
Description: A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
fsummulc2.1 | โข (๐ โ ๐ด โ Fin) |
fsummulc2.2 | โข (๐ โ ๐ถ โ โ) |
fsummulc2.3 | โข ((๐ โง ๐ โ ๐ด) โ ๐ต โ โ) |
Ref | Expression |
---|---|
fsummulc1 | โข (๐ โ (ฮฃ๐ โ ๐ด ๐ต ยท ๐ถ) = ฮฃ๐ โ ๐ด (๐ต ยท ๐ถ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsummulc2.1 | . . 3 โข (๐ โ ๐ด โ Fin) | |
2 | fsummulc2.2 | . . 3 โข (๐ โ ๐ถ โ โ) | |
3 | fsummulc2.3 | . . 3 โข ((๐ โง ๐ โ ๐ด) โ ๐ต โ โ) | |
4 | 1, 2, 3 | fsummulc2 15726 | . 2 โข (๐ โ (๐ถ ยท ฮฃ๐ โ ๐ด ๐ต) = ฮฃ๐ โ ๐ด (๐ถ ยท ๐ต)) |
5 | 1, 3 | fsumcl 15675 | . . 3 โข (๐ โ ฮฃ๐ โ ๐ด ๐ต โ โ) |
6 | 5, 2 | mulcomd 11231 | . 2 โข (๐ โ (ฮฃ๐ โ ๐ด ๐ต ยท ๐ถ) = (๐ถ ยท ฮฃ๐ โ ๐ด ๐ต)) |
7 | 2 | adantr 481 | . . . 4 โข ((๐ โง ๐ โ ๐ด) โ ๐ถ โ โ) |
8 | 3, 7 | mulcomd 11231 | . . 3 โข ((๐ โง ๐ โ ๐ด) โ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต)) |
9 | 8 | sumeq2dv 15645 | . 2 โข (๐ โ ฮฃ๐ โ ๐ด (๐ต ยท ๐ถ) = ฮฃ๐ โ ๐ด (๐ถ ยท ๐ต)) |
10 | 4, 6, 9 | 3eqtr4d 2782 | 1 โข (๐ โ (ฮฃ๐ โ ๐ด ๐ต ยท ๐ถ) = ฮฃ๐ โ ๐ด (๐ต ยท ๐ถ)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wcel 2106 (class class class)co 7405 Fincfn 8935 โcc 11104 ยท cmul 11111 ฮฃcsu 15628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 |
This theorem is referenced by: fsumdivc 15728 fsum2mul 15731 binomlem 15771 geoserg 15808 geo2sum 15815 mertenslem1 15826 binomfallfaclem2 15980 csbren 24907 plymullem1 25719 aalioulem1 25836 aaliou3lem6 25852 ftalem1 26566 ftalem5 26570 musumsum 26685 muinv 26686 fsumdvdsmul 26688 vmadivsum 26974 dchrisumlem2 26982 dchrmusum2 26986 dchrvmasumiflem2 26994 rpvmasum2 27004 dchrisum0lem1 27008 dchrisum0lem2a 27009 mulogsumlem 27023 mulog2sumlem3 27028 vmalogdivsum 27031 2vmadivsumlem 27032 logsqvma 27034 selberg3lem1 27049 selberg4 27053 pntrlog2bndlem5 27073 eulerpartlemgs2 33367 breprexplemc 33632 breprexpnat 33634 circlemeth 33640 hgt750lemb 33656 aks4d1p1p1 40916 jm2.23 41720 fsummulc1f 44273 dvnprodlem2 44649 dirkertrigeqlem2 44801 etransclem23 44959 etransclem46 44982 hoidmvlelem2 45298 nn0sumshdiglemA 47258 nn0sumshdiglemB 47259 nn0mullong 47264 aacllem 47801 amgmlemALT 47803 |
Copyright terms: Public domain | W3C validator |