MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsummulc1 Structured version   Visualization version   GIF version

Theorem fsummulc1 15736
Description: A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsummulc2.1 (๐œ‘ โ†’ ๐ด โˆˆ Fin)
fsummulc2.2 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
fsummulc2.3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ด) โ†’ ๐ต โˆˆ โ„‚)
Assertion
Ref Expression
fsummulc1 (๐œ‘ โ†’ (ฮฃ๐‘˜ โˆˆ ๐ด ๐ต ยท ๐ถ) = ฮฃ๐‘˜ โˆˆ ๐ด (๐ต ยท ๐ถ))
Distinct variable groups:   ๐ด,๐‘˜   ๐ถ,๐‘˜   ๐œ‘,๐‘˜
Allowed substitution hint:   ๐ต(๐‘˜)

Proof of Theorem fsummulc1
StepHypRef Expression
1 fsummulc2.1 . . 3 (๐œ‘ โ†’ ๐ด โˆˆ Fin)
2 fsummulc2.2 . . 3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
3 fsummulc2.3 . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ด) โ†’ ๐ต โˆˆ โ„‚)
41, 2, 3fsummulc2 15735 . 2 (๐œ‘ โ†’ (๐ถ ยท ฮฃ๐‘˜ โˆˆ ๐ด ๐ต) = ฮฃ๐‘˜ โˆˆ ๐ด (๐ถ ยท ๐ต))
51, 3fsumcl 15684 . . 3 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ ๐ด ๐ต โˆˆ โ„‚)
65, 2mulcomd 11240 . 2 (๐œ‘ โ†’ (ฮฃ๐‘˜ โˆˆ ๐ด ๐ต ยท ๐ถ) = (๐ถ ยท ฮฃ๐‘˜ โˆˆ ๐ด ๐ต))
72adantr 480 . . . 4 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ด) โ†’ ๐ถ โˆˆ โ„‚)
83, 7mulcomd 11240 . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ ๐ด) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
98sumeq2dv 15654 . 2 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ ๐ด (๐ต ยท ๐ถ) = ฮฃ๐‘˜ โˆˆ ๐ด (๐ถ ยท ๐ต))
104, 6, 93eqtr4d 2781 1 (๐œ‘ โ†’ (ฮฃ๐‘˜ โˆˆ ๐ด ๐ต ยท ๐ถ) = ฮฃ๐‘˜ โˆˆ ๐ด (๐ต ยท ๐ถ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1540   โˆˆ wcel 2105  (class class class)co 7412  Fincfn 8942  โ„‚cc 11111   ยท cmul 11118  ฮฃcsu 15637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638
This theorem is referenced by:  fsumdivc  15737  fsum2mul  15740  binomlem  15780  geoserg  15817  geo2sum  15824  mertenslem1  15835  binomfallfaclem2  15989  csbren  25148  plymullem1  25961  aalioulem1  26078  aaliou3lem6  26094  ftalem1  26810  ftalem5  26814  musumsum  26929  muinv  26930  fsumdvdsmul  26932  vmadivsum  27218  dchrisumlem2  27226  dchrmusum2  27230  dchrvmasumiflem2  27238  rpvmasum2  27248  dchrisum0lem1  27252  dchrisum0lem2a  27253  mulogsumlem  27267  mulog2sumlem3  27272  vmalogdivsum  27275  2vmadivsumlem  27276  logsqvma  27278  selberg3lem1  27293  selberg4  27297  pntrlog2bndlem5  27317  eulerpartlemgs2  33674  breprexplemc  33939  breprexpnat  33941  circlemeth  33947  hgt750lemb  33963  aks4d1p1p1  41235  jm2.23  42038  fsummulc1f  44587  dvnprodlem2  44963  dirkertrigeqlem2  45115  etransclem23  45273  etransclem46  45296  hoidmvlelem2  45612  nn0sumshdiglemA  47394  nn0sumshdiglemB  47395  nn0mullong  47400  aacllem  47937  amgmlemALT  47939
  Copyright terms: Public domain W3C validator