| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsummulc1 | Structured version Visualization version GIF version | ||
| Description: A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsummulc2.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fsummulc2.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| fsummulc2.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fsummulc1 | ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsummulc2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | fsummulc2.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 3 | fsummulc2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | fsummulc2 15726 | . 2 ⊢ (𝜑 → (𝐶 · Σ𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
| 5 | 1, 3 | fsumcl 15675 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 6 | 5, 2 | mulcomd 11171 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = (𝐶 · Σ𝑘 ∈ 𝐴 𝐵)) |
| 7 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 8 | 3, 7 | mulcomd 11171 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 · 𝐶) = (𝐶 · 𝐵)) |
| 9 | 8 | sumeq2dv 15644 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐶 · 𝐵)) |
| 10 | 4, 6, 9 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 · 𝐶) = Σ𝑘 ∈ 𝐴 (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 Fincfn 8895 ℂcc 11042 · cmul 11049 Σcsu 15628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 |
| This theorem is referenced by: fsumdivc 15728 fsum2mul 15731 binomlem 15771 geoserg 15808 geo2sum 15815 mertenslem1 15826 binomfallfaclem2 15982 csbren 25275 plymullem1 26095 aalioulem1 26216 aaliou3lem6 26232 ftalem1 26959 ftalem5 26963 musumsum 27078 muinv 27079 fsumdvdsmul 27081 fsumdvdsmulOLD 27083 vmadivsum 27369 dchrisumlem2 27377 dchrmusum2 27381 dchrvmasumiflem2 27389 rpvmasum2 27399 dchrisum0lem1 27403 dchrisum0lem2a 27404 mulogsumlem 27418 mulog2sumlem3 27423 vmalogdivsum 27426 2vmadivsumlem 27427 logsqvma 27429 selberg3lem1 27444 selberg4 27448 pntrlog2bndlem5 27468 eulerpartlemgs2 34344 breprexplemc 34596 breprexpnat 34598 circlemeth 34604 hgt750lemb 34620 aks4d1p1p1 42024 jm2.23 42958 fsummulc1f 45542 dvnprodlem2 45918 dirkertrigeqlem2 46070 etransclem23 46228 etransclem46 46251 hoidmvlelem2 46567 nn0sumshdiglemA 48581 nn0sumshdiglemB 48582 nn0mullong 48587 aacllem 49763 amgmlemALT 49765 |
| Copyright terms: Public domain | W3C validator |