![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcidlem | Structured version Visualization version GIF version |
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcidlem | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
2 | prmnn 16708 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
3 | 1, 2 | syl 17 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ) |
4 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0) | |
5 | 3, 4 | nnexpcld 14281 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℕ) |
6 | 1, 5 | pccld 16884 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) |
7 | 6 | nn0red 12586 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℝ) |
8 | 7 | leidd 11827 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴))) |
9 | 5 | nnzd 12638 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℤ) |
10 | pcdvdsb 16903 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) | |
11 | 1, 9, 6, 10 | syl3anc 1370 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) |
12 | 8, 11 | mpbid 232 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴)) |
13 | 3, 6 | nnexpcld 14281 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℕ) |
14 | 13 | nnzd 12638 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ) |
15 | dvdsle 16344 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ ∧ (𝑃↑𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) | |
16 | 14, 5, 15 | syl2anc 584 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
17 | 12, 16 | mpd 15 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴)) |
18 | 3 | nnred 12279 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ) |
19 | 6 | nn0zd 12637 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℤ) |
20 | nn0z 12636 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
21 | 20 | adantl 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
22 | prmuz2 16730 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
23 | eluz2gt1 12960 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
24 | 1, 22, 23 | 3syl 18 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃) |
25 | 18, 19, 21, 24 | leexp2d 14288 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
26 | 17, 25 | mpbird 257 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴) |
27 | iddvds 16304 | . . . 4 ⊢ ((𝑃↑𝐴) ∈ ℤ → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) | |
28 | 9, 27 | syl 17 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) |
29 | pcdvdsb 16903 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) | |
30 | 1, 9, 4, 29 | syl3anc 1370 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) |
31 | 28, 30 | mpbird 257 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))) |
32 | nn0re 12533 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
33 | 32 | adantl 481 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ) |
34 | 7, 33 | letri3d 11401 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ∧ 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))))) |
35 | 26, 31, 34 | mpbir2and 713 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 ℝcr 11152 1c1 11154 < clt 11293 ≤ cle 11294 ℕcn 12264 2c2 12319 ℕ0cn0 12524 ℤcz 12611 ℤ≥cuz 12876 ↑cexp 14099 ∥ cdvds 16287 ℙcprime 16705 pCnt cpc 16870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-dvds 16288 df-gcd 16529 df-prm 16706 df-pc 16871 |
This theorem is referenced by: pcid 16907 pcmpt 16926 dvdsppwf1o 27244 aks6d1c2p2 42101 aks6d1c7 42166 |
Copyright terms: Public domain | W3C validator |