![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcidlem | Structured version Visualization version GIF version |
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcidlem | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
2 | prmnn 16607 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
3 | 1, 2 | syl 17 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ) |
4 | simpr 485 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0) | |
5 | 3, 4 | nnexpcld 14204 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℕ) |
6 | 1, 5 | pccld 16779 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) |
7 | 6 | nn0red 12529 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℝ) |
8 | 7 | leidd 11776 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴))) |
9 | 5 | nnzd 12581 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℤ) |
10 | pcdvdsb 16798 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) | |
11 | 1, 9, 6, 10 | syl3anc 1371 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) |
12 | 8, 11 | mpbid 231 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴)) |
13 | 3, 6 | nnexpcld 14204 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℕ) |
14 | 13 | nnzd 12581 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ) |
15 | dvdsle 16249 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ ∧ (𝑃↑𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) | |
16 | 14, 5, 15 | syl2anc 584 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
17 | 12, 16 | mpd 15 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴)) |
18 | 3 | nnred 12223 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ) |
19 | 6 | nn0zd 12580 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℤ) |
20 | nn0z 12579 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
21 | 20 | adantl 482 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
22 | prmuz2 16629 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
23 | eluz2gt1 12900 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
24 | 1, 22, 23 | 3syl 18 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃) |
25 | 18, 19, 21, 24 | leexp2d 14211 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
26 | 17, 25 | mpbird 256 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴) |
27 | iddvds 16209 | . . . 4 ⊢ ((𝑃↑𝐴) ∈ ℤ → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) | |
28 | 9, 27 | syl 17 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) |
29 | pcdvdsb 16798 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) | |
30 | 1, 9, 4, 29 | syl3anc 1371 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) |
31 | 28, 30 | mpbird 256 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))) |
32 | nn0re 12477 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
33 | 32 | adantl 482 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ) |
34 | 7, 33 | letri3d 11352 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ∧ 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))))) |
35 | 26, 31, 34 | mpbir2and 711 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 1c1 11107 < clt 11244 ≤ cle 11245 ℕcn 12208 2c2 12263 ℕ0cn0 12468 ℤcz 12554 ℤ≥cuz 12818 ↑cexp 14023 ∥ cdvds 16193 ℙcprime 16604 pCnt cpc 16765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16194 df-gcd 16432 df-prm 16605 df-pc 16766 |
This theorem is referenced by: pcid 16802 pcmpt 16821 dvdsppwf1o 26679 aks6d1c2p2 40945 |
Copyright terms: Public domain | W3C validator |