![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcidlem | Structured version Visualization version GIF version |
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.) |
Ref | Expression |
---|---|
pcidlem | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
2 | prmnn 16615 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
3 | 1, 2 | syl 17 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ) |
4 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0) | |
5 | 3, 4 | nnexpcld 14210 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℕ) |
6 | 1, 5 | pccld 16789 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) |
7 | 6 | nn0red 12534 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℝ) |
8 | 7 | leidd 11781 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴))) |
9 | 5 | nnzd 12586 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∈ ℤ) |
10 | pcdvdsb 16808 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃↑𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) | |
11 | 1, 9, 6, 10 | syl3anc 1368 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴))) |
12 | 8, 11 | mpbid 231 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴)) |
13 | 3, 6 | nnexpcld 14210 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℕ) |
14 | 13 | nnzd 12586 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ) |
15 | dvdsle 16257 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∈ ℤ ∧ (𝑃↑𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) | |
16 | 14, 5, 15 | syl2anc 583 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ∥ (𝑃↑𝐴) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
17 | 12, 16 | mpd 15 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴)) |
18 | 3 | nnred 12228 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ) |
19 | 6 | nn0zd 12585 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ∈ ℤ) |
20 | nn0z 12584 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
21 | 20 | adantl 481 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
22 | prmuz2 16637 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
23 | eluz2gt1 12905 | . . . . 5 ⊢ (𝑃 ∈ (ℤ≥‘2) → 1 < 𝑃) | |
24 | 1, 22, 23 | 3syl 18 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃) |
25 | 18, 19, 21, 24 | leexp2d 14217 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃↑𝐴))) ≤ (𝑃↑𝐴))) |
26 | 17, 25 | mpbird 257 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴) |
27 | iddvds 16217 | . . . 4 ⊢ ((𝑃↑𝐴) ∈ ℤ → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) | |
28 | 9, 27 | syl 17 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑𝐴) ∥ (𝑃↑𝐴)) |
29 | pcdvdsb 16808 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝑃↑𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) | |
30 | 1, 9, 4, 29 | syl3anc 1368 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴)) ↔ (𝑃↑𝐴) ∥ (𝑃↑𝐴))) |
31 | 28, 30 | mpbird 257 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))) |
32 | nn0re 12482 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
33 | 32 | adantl 481 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ) |
34 | 7, 33 | letri3d 11357 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃↑𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃↑𝐴)) ≤ 𝐴 ∧ 𝐴 ≤ (𝑃 pCnt (𝑃↑𝐴))))) |
35 | 26, 31, 34 | mpbir2and 710 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 ℝcr 11108 1c1 11110 < clt 11249 ≤ cle 11250 ℕcn 12213 2c2 12268 ℕ0cn0 12473 ℤcz 12559 ℤ≥cuz 12823 ↑cexp 14029 ∥ cdvds 16201 ℙcprime 16612 pCnt cpc 16775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-q 12934 df-rp 12978 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14030 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-dvds 16202 df-gcd 16440 df-prm 16613 df-pc 16776 |
This theorem is referenced by: pcid 16812 pcmpt 16831 dvdsppwf1o 27068 aks6d1c2p2 41495 |
Copyright terms: Public domain | W3C validator |