MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcidlem Structured version   Visualization version   GIF version

Theorem pcidlem 16801
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcidlem ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)

Proof of Theorem pcidlem
StepHypRef Expression
1 simpl 483 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ)
2 prmnn 16607 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ)
4 simpr 485 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
53, 4nnexpcld 14204 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
61, 5pccld 16779 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0)
76nn0red 12529 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℝ)
87leidd 11776 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)))
95nnzd 12581 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
10 pcdvdsb 16798 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
111, 9, 6, 10syl3anc 1371 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
128, 11mpbid 231 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴))
133, 6nnexpcld 14204 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℕ)
1413nnzd 12581 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ)
15 dvdsle 16249 . . . . 5 (((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ ∧ (𝑃𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1614, 5, 15syl2anc 584 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1712, 16mpd 15 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴))
183nnred 12223 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ)
196nn0zd 12580 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℤ)
20 nn0z 12579 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2120adantl 482 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
22 prmuz2 16629 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
23 eluz2gt1 12900 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
241, 22, 233syl 18 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃)
2518, 19, 21, 24leexp2d 14211 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
2617, 25mpbird 256 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ 𝐴)
27 iddvds 16209 . . . 4 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ (𝑃𝐴))
289, 27syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ (𝑃𝐴))
29 pcdvdsb 16798 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
301, 9, 4, 29syl3anc 1371 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
3128, 30mpbird 256 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))
32 nn0re 12477 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
3332adantl 482 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
347, 33letri3d 11352 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))))
3526, 31, 34mpbir2and 711 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5147  cfv 6540  (class class class)co 7405  cr 11105  1c1 11107   < clt 11244  cle 11245  cn 12208  2c2 12263  0cn0 12468  cz 12554  cuz 12818  cexp 14023  cdvds 16193  cprime 16604   pCnt cpc 16765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766
This theorem is referenced by:  pcid  16802  pcmpt  16821  dvdsppwf1o  26679  aks6d1c2p2  40945
  Copyright terms: Public domain W3C validator