MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcidlem Structured version   Visualization version   GIF version

Theorem pcidlem 16819
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcidlem ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)

Proof of Theorem pcidlem
StepHypRef Expression
1 simpl 482 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ)
2 prmnn 16620 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ)
4 simpr 484 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
53, 4nnexpcld 14186 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
61, 5pccld 16797 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0)
76nn0red 12480 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℝ)
87leidd 11720 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)))
95nnzd 12532 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
10 pcdvdsb 16816 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
111, 9, 6, 10syl3anc 1373 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
128, 11mpbid 232 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴))
133, 6nnexpcld 14186 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℕ)
1413nnzd 12532 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ)
15 dvdsle 16256 . . . . 5 (((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ ∧ (𝑃𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1614, 5, 15syl2anc 584 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1712, 16mpd 15 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴))
183nnred 12177 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ)
196nn0zd 12531 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℤ)
20 nn0z 12530 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2120adantl 481 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
22 prmuz2 16642 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
23 eluz2gt1 12855 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
241, 22, 233syl 18 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃)
2518, 19, 21, 24leexp2d 14193 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
2617, 25mpbird 257 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ 𝐴)
27 iddvds 16215 . . . 4 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ (𝑃𝐴))
289, 27syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ (𝑃𝐴))
29 pcdvdsb 16816 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
301, 9, 4, 29syl3anc 1373 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
3128, 30mpbird 257 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))
32 nn0re 12427 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
3332adantl 481 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
347, 33letri3d 11292 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))))
3526, 31, 34mpbir2and 713 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   < clt 11184  cle 11185  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  cexp 14002  cdvds 16198  cprime 16617   pCnt cpc 16783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784
This theorem is referenced by:  pcid  16820  pcmpt  16839  dvdsppwf1o  27129  aks6d1c2p2  42100  aks6d1c7  42165
  Copyright terms: Public domain W3C validator