MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcidlem Structured version   Visualization version   GIF version

Theorem pcidlem 15796
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.)
Assertion
Ref Expression
pcidlem ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)

Proof of Theorem pcidlem
StepHypRef Expression
1 simpl 470 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℙ)
2 prmnn 15609 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℕ)
4 simpr 473 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℕ0)
53, 4nnexpcld 13256 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
61, 5pccld 15775 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0)
76nn0red 11621 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℝ)
87leidd 10882 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)))
95nnzd 11750 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
10 pcdvdsb 15793 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ (𝑃 pCnt (𝑃𝐴)) ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
111, 9, 6, 10syl3anc 1483 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴)))
128, 11mpbid 223 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴))
133, 6nnexpcld 13256 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℕ)
1413nnzd 11750 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ)
15 dvdsle 15258 . . . . 5 (((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∈ ℤ ∧ (𝑃𝐴) ∈ ℕ) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1614, 5, 15syl2anc 575 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃↑(𝑃 pCnt (𝑃𝐴))) ∥ (𝑃𝐴) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
1712, 16mpd 15 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴))
183nnred 11323 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ ℝ)
196nn0zd 11749 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ∈ ℤ)
20 nn0z 11669 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2120adantl 469 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
22 prmuz2 15629 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
231, 22syl 17 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝑃 ∈ (ℤ‘2))
24 eluz2b1 11981 . . . . . 6 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℤ ∧ 1 < 𝑃))
2524simprbi 486 . . . . 5 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
2623, 25syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 1 < 𝑃)
2718, 19, 21, 26leexp2d 13265 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴 ↔ (𝑃↑(𝑃 pCnt (𝑃𝐴))) ≤ (𝑃𝐴)))
2817, 27mpbird 248 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) ≤ 𝐴)
29 iddvds 15221 . . . 4 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ (𝑃𝐴))
309, 29syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ (𝑃𝐴))
31 pcdvdsb 15793 . . . 4 ((𝑃 ∈ ℙ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
321, 9, 4, 31syl3anc 1483 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt (𝑃𝐴)) ↔ (𝑃𝐴) ∥ (𝑃𝐴)))
3330, 32mpbird 248 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))
34 nn0re 11571 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
3534adantl 469 . . 3 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
367, 35letri3d 10467 . 2 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt (𝑃𝐴)) = 𝐴 ↔ ((𝑃 pCnt (𝑃𝐴)) ≤ 𝐴𝐴 ≤ (𝑃 pCnt (𝑃𝐴)))))
3728, 33, 36mpbir2and 695 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157   class class class wbr 4851  cfv 6104  (class class class)co 6877  cr 10223  1c1 10225   < clt 10362  cle 10363  cn 11308  2c2 11359  0cn0 11562  cz 11646  cuz 11907  cexp 13086  cdvds 15206  cprime 15606   pCnt cpc 15761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-iun 4721  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-om 7299  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-div 10973  df-nn 11309  df-2 11367  df-3 11368  df-n0 11563  df-z 11647  df-uz 11908  df-q 12011  df-rp 12050  df-fl 12820  df-mod 12896  df-seq 13028  df-exp 13087  df-cj 14065  df-re 14066  df-im 14067  df-sqrt 14201  df-abs 14202  df-dvds 15207  df-gcd 15439  df-prm 15607  df-pc 15762
This theorem is referenced by:  pcid  15797  pcmpt  15816  dvdsppwf1o  25132
  Copyright terms: Public domain W3C validator