MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrmul Structured version   Visualization version   GIF version

Theorem dgrmul 26192
Description: The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgradd.1 𝑀 = (deg‘𝐹)
dgradd.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgrmul (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) = (𝑀 + 𝑁))

Proof of Theorem dgrmul
StepHypRef Expression
1 dgradd.1 . . . 4 𝑀 = (deg‘𝐹)
2 dgradd.2 . . . 4 𝑁 = (deg‘𝐺)
31, 2dgrmul2 26191 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁))
43ad2ant2r 747 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁))
5 plymulcl 26142 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) ∈ (Poly‘ℂ))
65ad2ant2r 747 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝐹f · 𝐺) ∈ (Poly‘ℂ))
7 dgrcl 26154 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
81, 7eqeltrid 2832 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
98ad2antrr 726 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑀 ∈ ℕ0)
10 dgrcl 26154 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
112, 10eqeltrid 2832 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
1211ad2antrl 728 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑁 ∈ ℕ0)
139, 12nn0addcld 12467 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈ ℕ0)
14 eqid 2729 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
15 eqid 2729 . . . . . 6 (coeff‘𝐺) = (coeff‘𝐺)
1614, 15, 1, 2coemulhi 26175 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)))
1716ad2ant2r 747 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)))
1814coef3 26153 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
1918ad2antrr 726 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (coeff‘𝐹):ℕ0⟶ℂ)
2019, 9ffvelcdmd 7023 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐹)‘𝑀) ∈ ℂ)
2115coef3 26153 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ)
2221ad2antrl 728 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (coeff‘𝐺):ℕ0⟶ℂ)
2322, 12ffvelcdmd 7023 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
241, 14dgreq0 26187 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ ((coeff‘𝐹)‘𝑀) = 0))
2524necon3bid 2969 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐹 ≠ 0𝑝 ↔ ((coeff‘𝐹)‘𝑀) ≠ 0))
2625biimpa 476 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → ((coeff‘𝐹)‘𝑀) ≠ 0)
2726adantr 480 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐹)‘𝑀) ≠ 0)
282, 15dgreq0 26187 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) = 0))
2928necon3bid 2969 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (𝐺 ≠ 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) ≠ 0))
3029biimpa 476 . . . . . 6 ((𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((coeff‘𝐺)‘𝑁) ≠ 0)
3130adantl 481 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐺)‘𝑁) ≠ 0)
3220, 23, 27, 31mulne0d 11790 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)) ≠ 0)
3317, 32eqnetrd 2992 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) ≠ 0)
34 eqid 2729 . . . 4 (coeff‘(𝐹f · 𝐺)) = (coeff‘(𝐹f · 𝐺))
35 eqid 2729 . . . 4 (deg‘(𝐹f · 𝐺)) = (deg‘(𝐹f · 𝐺))
3634, 35dgrub 26155 . . 3 (((𝐹f · 𝐺) ∈ (Poly‘ℂ) ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧ ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) ≠ 0) → (𝑀 + 𝑁) ≤ (deg‘(𝐹f · 𝐺)))
376, 13, 33, 36syl3anc 1373 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ≤ (deg‘(𝐹f · 𝐺)))
38 dgrcl 26154 . . . . 5 ((𝐹f · 𝐺) ∈ (Poly‘ℂ) → (deg‘(𝐹f · 𝐺)) ∈ ℕ0)
396, 38syl 17 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) ∈ ℕ0)
4039nn0red 12464 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) ∈ ℝ)
4113nn0red 12464 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈ ℝ)
4240, 41letri3d 11276 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((deg‘(𝐹f · 𝐺)) = (𝑀 + 𝑁) ↔ ((deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁) ∧ (𝑀 + 𝑁) ≤ (deg‘(𝐹f · 𝐺)))))
434, 37, 42mpbir2and 713 1 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) = (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  cc 11026  0cc0 11028   + caddc 11031   · cmul 11033  cle 11169  0cn0 12402  0𝑝c0p 25586  Polycply 26105  coeffccoe 26107  degcdgr 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-0p 25587  df-ply 26109  df-coe 26111  df-dgr 26112
This theorem is referenced by:  dgrmulc  26193  dgrcolem1  26195  plydivlem4  26220  plydiveu  26222  fta1lem  26231  quotcan  26233  vieta1lem1  26234  vieta1lem2  26235  cjnpoly  46874
  Copyright terms: Public domain W3C validator