MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrmul Structured version   Visualization version   GIF version

Theorem dgrmul 25668
Description: The degree of a product of nonzero polynomials is the sum of degrees. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgradd.1 𝑀 = (deg‘𝐹)
dgradd.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgrmul (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) = (𝑀 + 𝑁))

Proof of Theorem dgrmul
StepHypRef Expression
1 dgradd.1 . . . 4 𝑀 = (deg‘𝐹)
2 dgradd.2 . . . 4 𝑁 = (deg‘𝐺)
31, 2dgrmul2 25667 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁))
43ad2ant2r 745 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁))
5 plymulcl 25619 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f · 𝐺) ∈ (Poly‘ℂ))
65ad2ant2r 745 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝐹f · 𝐺) ∈ (Poly‘ℂ))
7 dgrcl 25631 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
81, 7eqeltrid 2836 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
98ad2antrr 724 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑀 ∈ ℕ0)
10 dgrcl 25631 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
112, 10eqeltrid 2836 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
1211ad2antrl 726 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑁 ∈ ℕ0)
139, 12nn0addcld 12486 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈ ℕ0)
14 eqid 2731 . . . . . 6 (coeff‘𝐹) = (coeff‘𝐹)
15 eqid 2731 . . . . . 6 (coeff‘𝐺) = (coeff‘𝐺)
1614, 15, 1, 2coemulhi 25652 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)))
1716ad2ant2r 745 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)))
1814coef3 25630 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
1918ad2antrr 724 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (coeff‘𝐹):ℕ0⟶ℂ)
2019, 9ffvelcdmd 7041 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐹)‘𝑀) ∈ ℂ)
2115coef3 25630 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ)
2221ad2antrl 726 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (coeff‘𝐺):ℕ0⟶ℂ)
2322, 12ffvelcdmd 7041 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
241, 14dgreq0 25663 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔ ((coeff‘𝐹)‘𝑀) = 0))
2524necon3bid 2984 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (𝐹 ≠ 0𝑝 ↔ ((coeff‘𝐹)‘𝑀) ≠ 0))
2625biimpa 477 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) → ((coeff‘𝐹)‘𝑀) ≠ 0)
2726adantr 481 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐹)‘𝑀) ≠ 0)
282, 15dgreq0 25663 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) = 0))
2928necon3bid 2984 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (𝐺 ≠ 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) ≠ 0))
3029biimpa 477 . . . . . 6 ((𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → ((coeff‘𝐺)‘𝑁) ≠ 0)
3130adantl 482 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘𝐺)‘𝑁) ≠ 0)
3220, 23, 27, 31mulne0d 11816 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)) ≠ 0)
3317, 32eqnetrd 3007 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) ≠ 0)
34 eqid 2731 . . . 4 (coeff‘(𝐹f · 𝐺)) = (coeff‘(𝐹f · 𝐺))
35 eqid 2731 . . . 4 (deg‘(𝐹f · 𝐺)) = (deg‘(𝐹f · 𝐺))
3634, 35dgrub 25632 . . 3 (((𝐹f · 𝐺) ∈ (Poly‘ℂ) ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧ ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) ≠ 0) → (𝑀 + 𝑁) ≤ (deg‘(𝐹f · 𝐺)))
376, 13, 33, 36syl3anc 1371 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ≤ (deg‘(𝐹f · 𝐺)))
38 dgrcl 25631 . . . . 5 ((𝐹f · 𝐺) ∈ (Poly‘ℂ) → (deg‘(𝐹f · 𝐺)) ∈ ℕ0)
396, 38syl 17 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) ∈ ℕ0)
4039nn0red 12483 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) ∈ ℝ)
4113nn0red 12483 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈ ℝ)
4240, 41letri3d 11306 . 2 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → ((deg‘(𝐹f · 𝐺)) = (𝑀 + 𝑁) ↔ ((deg‘(𝐹f · 𝐺)) ≤ (𝑀 + 𝑁) ∧ (𝑀 + 𝑁) ≤ (deg‘(𝐹f · 𝐺)))))
434, 37, 42mpbir2and 711 1 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (deg‘(𝐹f · 𝐺)) = (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2939   class class class wbr 5110  wf 6497  cfv 6501  (class class class)co 7362  f cof 7620  cc 11058  0cc0 11060   + caddc 11063   · cmul 11065  cle 11199  0cn0 12422  0𝑝c0p 25070  Polycply 25582  coeffccoe 25584  degcdgr 25585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-fzo 13578  df-fl 13707  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-rlim 15383  df-sum 15583  df-0p 25071  df-ply 25586  df-coe 25588  df-dgr 25589
This theorem is referenced by:  dgrmulc  25669  dgrcolem1  25671  plydivlem4  25693  plydiveu  25695  fta1lem  25704  quotcan  25706  vieta1lem1  25707  vieta1lem2  25708
  Copyright terms: Public domain W3C validator