Proof of Theorem dgrmul
| Step | Hyp | Ref
| Expression |
| 1 | | dgradd.1 |
. . . 4
⊢ 𝑀 = (deg‘𝐹) |
| 2 | | dgradd.2 |
. . . 4
⊢ 𝑁 = (deg‘𝐺) |
| 3 | 1, 2 | dgrmul2 26264 |
. . 3
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁)) |
| 4 | 3 | ad2ant2r 747 |
. 2
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
(deg‘(𝐹
∘f · 𝐺)) ≤ (𝑀 + 𝑁)) |
| 5 | | plymulcl 26215 |
. . . 4
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹 ∘f · 𝐺) ∈
(Poly‘ℂ)) |
| 6 | 5 | ad2ant2r 747 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝐹 ∘f ·
𝐺) ∈
(Poly‘ℂ)) |
| 7 | | dgrcl 26227 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
| 8 | 1, 7 | eqeltrid 2837 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈
ℕ0) |
| 9 | 8 | ad2antrr 726 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑀 ∈
ℕ0) |
| 10 | | dgrcl 26227 |
. . . . . 6
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) |
| 11 | 2, 10 | eqeltrid 2837 |
. . . . 5
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) |
| 12 | 11 | ad2antrl 728 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → 𝑁 ∈
ℕ0) |
| 13 | 9, 12 | nn0addcld 12575 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈
ℕ0) |
| 14 | | eqid 2734 |
. . . . . 6
⊢
(coeff‘𝐹) =
(coeff‘𝐹) |
| 15 | | eqid 2734 |
. . . . . 6
⊢
(coeff‘𝐺) =
(coeff‘𝐺) |
| 16 | 14, 15, 1, 2 | coemulhi 26248 |
. . . . 5
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹 ∘f · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁))) |
| 17 | 16 | ad2ant2r 747 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
((coeff‘(𝐹
∘f · 𝐺))‘(𝑀 + 𝑁)) = (((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁))) |
| 18 | 14 | coef3 26226 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ) |
| 19 | 18 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
(coeff‘𝐹):ℕ0⟶ℂ) |
| 20 | 19, 9 | ffvelcdmd 7086 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
((coeff‘𝐹)‘𝑀) ∈ ℂ) |
| 21 | 15 | coef3 26226 |
. . . . . . 7
⊢ (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ) |
| 22 | 21 | ad2antrl 728 |
. . . . . 6
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
(coeff‘𝐺):ℕ0⟶ℂ) |
| 23 | 22, 12 | ffvelcdmd 7086 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
((coeff‘𝐺)‘𝑁) ∈ ℂ) |
| 24 | 1, 14 | dgreq0 26260 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 = 0𝑝 ↔
((coeff‘𝐹)‘𝑀) = 0)) |
| 25 | 24 | necon3bid 2975 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → (𝐹 ≠ 0𝑝 ↔
((coeff‘𝐹)‘𝑀) ≠ 0)) |
| 26 | 25 | biimpa 476 |
. . . . . 6
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) →
((coeff‘𝐹)‘𝑀) ≠ 0) |
| 27 | 26 | adantr 480 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
((coeff‘𝐹)‘𝑀) ≠ 0) |
| 28 | 2, 15 | dgreq0 26260 |
. . . . . . . 8
⊢ (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔
((coeff‘𝐺)‘𝑁) = 0)) |
| 29 | 28 | necon3bid 2975 |
. . . . . . 7
⊢ (𝐺 ∈ (Poly‘𝑆) → (𝐺 ≠ 0𝑝 ↔
((coeff‘𝐺)‘𝑁) ≠ 0)) |
| 30 | 29 | biimpa 476 |
. . . . . 6
⊢ ((𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) →
((coeff‘𝐺)‘𝑁) ≠ 0) |
| 31 | 30 | adantl 481 |
. . . . 5
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
((coeff‘𝐺)‘𝑁) ≠ 0) |
| 32 | 20, 23, 27, 31 | mulne0d 11898 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
(((coeff‘𝐹)‘𝑀) · ((coeff‘𝐺)‘𝑁)) ≠ 0) |
| 33 | 17, 32 | eqnetrd 2998 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
((coeff‘(𝐹
∘f · 𝐺))‘(𝑀 + 𝑁)) ≠ 0) |
| 34 | | eqid 2734 |
. . . 4
⊢
(coeff‘(𝐹
∘f · 𝐺)) = (coeff‘(𝐹 ∘f · 𝐺)) |
| 35 | | eqid 2734 |
. . . 4
⊢
(deg‘(𝐹
∘f · 𝐺)) = (deg‘(𝐹 ∘f · 𝐺)) |
| 36 | 34, 35 | dgrub 26228 |
. . 3
⊢ (((𝐹 ∘f ·
𝐺) ∈
(Poly‘ℂ) ∧ (𝑀 + 𝑁) ∈ ℕ0 ∧
((coeff‘(𝐹
∘f · 𝐺))‘(𝑀 + 𝑁)) ≠ 0) → (𝑀 + 𝑁) ≤ (deg‘(𝐹 ∘f · 𝐺))) |
| 37 | 6, 13, 33, 36 | syl3anc 1372 |
. 2
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ≤ (deg‘(𝐹 ∘f · 𝐺))) |
| 38 | | dgrcl 26227 |
. . . . 5
⊢ ((𝐹 ∘f ·
𝐺) ∈
(Poly‘ℂ) → (deg‘(𝐹 ∘f · 𝐺)) ∈
ℕ0) |
| 39 | 6, 38 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
(deg‘(𝐹
∘f · 𝐺)) ∈
ℕ0) |
| 40 | 39 | nn0red 12572 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
(deg‘(𝐹
∘f · 𝐺)) ∈ ℝ) |
| 41 | 13 | nn0red 12572 |
. . 3
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) → (𝑀 + 𝑁) ∈ ℝ) |
| 42 | 40, 41 | letri3d 11386 |
. 2
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
((deg‘(𝐹
∘f · 𝐺)) = (𝑀 + 𝑁) ↔ ((deg‘(𝐹 ∘f · 𝐺)) ≤ (𝑀 + 𝑁) ∧ (𝑀 + 𝑁) ≤ (deg‘(𝐹 ∘f · 𝐺))))) |
| 43 | 4, 37, 42 | mpbir2and 713 |
1
⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐹 ≠ 0𝑝) ∧ (𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝)) →
(deg‘(𝐹
∘f · 𝐺)) = (𝑀 + 𝑁)) |