| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgreq | Structured version Visualization version GIF version | ||
| Description: If the highest term in a polynomial expression is nonzero, then the polynomial's degree is completely determined. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgreq.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| dgreq.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| dgreq.3 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| dgreq.4 | ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| dgreq.5 | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| dgreq.6 | ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) |
| Ref | Expression |
|---|---|
| dgreq | ⊢ (𝜑 → (deg‘𝐹) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dgreq.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | dgreq.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | dgreq.3 | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 4 | elfznn0 13524 | . . . 4 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
| 5 | ffvelcdm 7022 | . . . 4 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
| 6 | 3, 4, 5 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
| 7 | dgreq.5 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | |
| 8 | 1, 2, 6, 7 | dgrle 26178 | . 2 ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
| 9 | dgreq.4 | . . . . . 6 ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) | |
| 10 | 1, 2, 3, 9, 7 | coeeq 26162 | . . . . 5 ⊢ (𝜑 → (coeff‘𝐹) = 𝐴) |
| 11 | 10 | fveq1d 6832 | . . . 4 ⊢ (𝜑 → ((coeff‘𝐹)‘𝑁) = (𝐴‘𝑁)) |
| 12 | dgreq.6 | . . . 4 ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) | |
| 13 | 11, 12 | eqnetrd 2996 | . . 3 ⊢ (𝜑 → ((coeff‘𝐹)‘𝑁) ≠ 0) |
| 14 | eqid 2733 | . . . 4 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 15 | eqid 2733 | . . . 4 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
| 16 | 14, 15 | dgrub 26169 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹)‘𝑁) ≠ 0) → 𝑁 ≤ (deg‘𝐹)) |
| 17 | 1, 2, 13, 16 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝑁 ≤ (deg‘𝐹)) |
| 18 | dgrcl 26168 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 19 | 1, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (deg‘𝐹) ∈ ℕ0) |
| 20 | 19 | nn0red 12452 | . . 3 ⊢ (𝜑 → (deg‘𝐹) ∈ ℝ) |
| 21 | 2 | nn0red 12452 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 22 | 20, 21 | letri3d 11264 | . 2 ⊢ (𝜑 → ((deg‘𝐹) = 𝑁 ↔ ((deg‘𝐹) ≤ 𝑁 ∧ 𝑁 ≤ (deg‘𝐹)))) |
| 23 | 8, 17, 22 | mpbir2and 713 | 1 ⊢ (𝜑 → (deg‘𝐹) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 “ cima 5624 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 0cc0 11015 1c1 11016 + caddc 11018 · cmul 11020 ≤ cle 11156 ℕ0cn0 12390 ℤ≥cuz 12740 ...cfz 13411 ↑cexp 13972 Σcsu 15597 Polycply 26119 coeffccoe 26121 degcdgr 26122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-rlim 15400 df-sum 15598 df-0p 25601 df-ply 26123 df-coe 26125 df-dgr 26126 |
| This theorem is referenced by: coe1termlem 26193 basellem2 27022 |
| Copyright terms: Public domain | W3C validator |