| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dgreq | Structured version Visualization version GIF version | ||
| Description: If the highest term in a polynomial expression is nonzero, then the polynomial's degree is completely determined. (Contributed by Mario Carneiro, 24-Jul-2014.) |
| Ref | Expression |
|---|---|
| dgreq.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| dgreq.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| dgreq.3 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| dgreq.4 | ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) |
| dgreq.5 | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| dgreq.6 | ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) |
| Ref | Expression |
|---|---|
| dgreq | ⊢ (𝜑 → (deg‘𝐹) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dgreq.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
| 2 | dgreq.2 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 3 | dgreq.3 | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
| 4 | elfznn0 13642 | . . . 4 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
| 5 | ffvelcdm 7076 | . . . 4 ⊢ ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | |
| 6 | 3, 4, 5 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
| 7 | dgreq.5 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | |
| 8 | 1, 2, 6, 7 | dgrle 26205 | . 2 ⊢ (𝜑 → (deg‘𝐹) ≤ 𝑁) |
| 9 | dgreq.4 | . . . . . 6 ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑁 + 1))) = {0}) | |
| 10 | 1, 2, 3, 9, 7 | coeeq 26189 | . . . . 5 ⊢ (𝜑 → (coeff‘𝐹) = 𝐴) |
| 11 | 10 | fveq1d 6883 | . . . 4 ⊢ (𝜑 → ((coeff‘𝐹)‘𝑁) = (𝐴‘𝑁)) |
| 12 | dgreq.6 | . . . 4 ⊢ (𝜑 → (𝐴‘𝑁) ≠ 0) | |
| 13 | 11, 12 | eqnetrd 3000 | . . 3 ⊢ (𝜑 → ((coeff‘𝐹)‘𝑁) ≠ 0) |
| 14 | eqid 2736 | . . . 4 ⊢ (coeff‘𝐹) = (coeff‘𝐹) | |
| 15 | eqid 2736 | . . . 4 ⊢ (deg‘𝐹) = (deg‘𝐹) | |
| 16 | 14, 15 | dgrub 26196 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹)‘𝑁) ≠ 0) → 𝑁 ≤ (deg‘𝐹)) |
| 17 | 1, 2, 13, 16 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝑁 ≤ (deg‘𝐹)) |
| 18 | dgrcl 26195 | . . . . 5 ⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0) | |
| 19 | 1, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (deg‘𝐹) ∈ ℕ0) |
| 20 | 19 | nn0red 12568 | . . 3 ⊢ (𝜑 → (deg‘𝐹) ∈ ℝ) |
| 21 | 2 | nn0red 12568 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 22 | 20, 21 | letri3d 11382 | . 2 ⊢ (𝜑 → ((deg‘𝐹) = 𝑁 ↔ ((deg‘𝐹) ≤ 𝑁 ∧ 𝑁 ≤ (deg‘𝐹)))) |
| 23 | 8, 17, 22 | mpbir2and 713 | 1 ⊢ (𝜑 → (deg‘𝐹) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {csn 4606 class class class wbr 5124 ↦ cmpt 5206 “ cima 5662 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 ≤ cle 11275 ℕ0cn0 12506 ℤ≥cuz 12857 ...cfz 13529 ↑cexp 14084 Σcsu 15707 Polycply 26146 coeffccoe 26148 degcdgr 26149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-sum 15708 df-0p 25628 df-ply 26150 df-coe 26152 df-dgr 26153 |
| This theorem is referenced by: coe1termlem 26220 basellem2 27049 |
| Copyright terms: Public domain | W3C validator |