| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgsfle1 | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 has magnitude less or equal to 1. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgsval.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) |
| Ref | Expression |
|---|---|
| lgsfle1 | ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑀 ∈ ℕ) → (abs‘(𝐹‘𝑀)) ≤ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lgsval.1 | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) | |
| 2 | eqid 2731 | . . . 4 ⊢ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} | |
| 3 | 1, 2 | lgsfcl2 27236 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶{𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}) |
| 4 | 3 | ffvelcdmda 7012 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑀 ∈ ℕ) → (𝐹‘𝑀) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}) |
| 5 | fveq2 6817 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑀) → (abs‘𝑥) = (abs‘(𝐹‘𝑀))) | |
| 6 | 5 | breq1d 5096 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑀) → ((abs‘𝑥) ≤ 1 ↔ (abs‘(𝐹‘𝑀)) ≤ 1)) |
| 7 | 6 | elrab 3642 | . . 3 ⊢ ((𝐹‘𝑀) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} ↔ ((𝐹‘𝑀) ∈ ℤ ∧ (abs‘(𝐹‘𝑀)) ≤ 1)) |
| 8 | 7 | simprbi 496 | . 2 ⊢ ((𝐹‘𝑀) ∈ {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} → (abs‘(𝐹‘𝑀)) ≤ 1) |
| 9 | 4, 8 | syl 17 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑀 ∈ ℕ) → (abs‘(𝐹‘𝑀)) ≤ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ifcif 4470 {cpr 4573 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 + caddc 11004 ≤ cle 11142 − cmin 11339 -cneg 11340 / cdiv 11769 ℕcn 12120 2c2 12175 7c7 12180 8c8 12181 ℤcz 12463 mod cmo 13768 ↑cexp 13963 abscabs 15136 ∥ cdvds 16158 ℙcprime 16577 pCnt cpc 16743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-mod 13769 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-gcd 16401 df-prm 16578 df-phi 16672 df-pc 16744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |