MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsfcl Structured version   Visualization version   GIF version

Theorem lgsfcl 27179
Description: Closure of the function 𝐹 which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ β„• ↦ if(𝑛 ∈ β„™, (if(𝑛 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 βˆ’ 1) / 2)) + 1) mod 𝑛) βˆ’ 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsfcl ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„€ ∧ 𝑁 β‰  0) β†’ 𝐹:β„•βŸΆβ„€)
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsfcl
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 lgsval.1 . . 3 𝐹 = (𝑛 ∈ β„• ↦ if(𝑛 ∈ β„™, (if(𝑛 = 2, if(2 βˆ₯ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 βˆ’ 1) / 2)) + 1) mod 𝑛) βˆ’ 1))↑(𝑛 pCnt 𝑁)), 1))
2 eqid 2724 . . 3 {π‘₯ ∈ β„€ ∣ (absβ€˜π‘₯) ≀ 1} = {π‘₯ ∈ β„€ ∣ (absβ€˜π‘₯) ≀ 1}
31, 2lgsfcl2 27177 . 2 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„€ ∧ 𝑁 β‰  0) β†’ 𝐹:β„•βŸΆ{π‘₯ ∈ β„€ ∣ (absβ€˜π‘₯) ≀ 1})
4 ssrab2 4070 . 2 {π‘₯ ∈ β„€ ∣ (absβ€˜π‘₯) ≀ 1} βŠ† β„€
5 fss 6725 . 2 ((𝐹:β„•βŸΆ{π‘₯ ∈ β„€ ∣ (absβ€˜π‘₯) ≀ 1} ∧ {π‘₯ ∈ β„€ ∣ (absβ€˜π‘₯) ≀ 1} βŠ† β„€) β†’ 𝐹:β„•βŸΆβ„€)
63, 4, 5sylancl 585 1 ((𝐴 ∈ β„€ ∧ 𝑁 ∈ β„€ ∧ 𝑁 β‰  0) β†’ 𝐹:β„•βŸΆβ„€)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  {crab 3424   βŠ† wss 3941  ifcif 4521  {cpr 4623   class class class wbr 5139   ↦ cmpt 5222  βŸΆwf 6530  β€˜cfv 6534  (class class class)co 7402  0cc0 11107  1c1 11108   + caddc 11110   ≀ cle 11248   βˆ’ cmin 11443  -cneg 11444   / cdiv 11870  β„•cn 12211  2c2 12266  7c7 12271  8c8 12272  β„€cz 12557   mod cmo 13835  β†‘cexp 14028  abscabs 15183   βˆ₯ cdvds 16200  β„™cprime 16611   pCnt cpc 16774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-dju 9893  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-q 12932  df-rp 12976  df-fz 13486  df-fzo 13629  df-fl 13758  df-mod 13836  df-seq 13968  df-exp 14029  df-hash 14292  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16201  df-gcd 16439  df-prm 16612  df-phi 16704  df-pc 16775
This theorem is referenced by:  lgsval2lem  27181  lgsfcl3  27192
  Copyright terms: Public domain W3C validator