Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > linecgrand | Structured version Visualization version GIF version |
Description: Deduction form of linecgr 34428. (Contributed by Scott Fenton, 14-Oct-2013.) |
Ref | Expression |
---|---|
linecgrand.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
linecgrand.2 | ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) |
linecgrand.3 | ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) |
linecgrand.4 | ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) |
linecgrand.5 | ⊢ (𝜑 → 𝑃 ∈ (𝔼‘𝑁)) |
linecgrand.6 | ⊢ (𝜑 → 𝑄 ∈ (𝔼‘𝑁)) |
linecgrand.7 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ≠ 𝐵) |
linecgrand.8 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Colinear 〈𝐵, 𝐶〉) |
linecgrand.9 | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉) |
linecgrand.10 | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉) |
Ref | Expression |
---|---|
linecgrand | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linecgrand.7 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ≠ 𝐵) | |
2 | linecgrand.8 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Colinear 〈𝐵, 𝐶〉) | |
3 | 1, 2 | jca 513 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉)) |
4 | linecgrand.9 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉) | |
5 | linecgrand.10 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉) | |
6 | 4, 5 | jca 513 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) |
7 | linecgrand.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | linecgrand.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) | |
9 | linecgrand.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) | |
10 | linecgrand.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) | |
11 | linecgrand.5 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (𝔼‘𝑁)) | |
12 | linecgrand.6 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝔼‘𝑁)) | |
13 | linecgr 34428 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) | |
14 | 7, 8, 9, 10, 11, 12, 13 | syl132anc 1388 | . . 3 ⊢ (𝜑 → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) |
15 | 14 | adantr 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) |
16 | 3, 6, 15 | mp2and 697 | 1 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 ≠ wne 2941 〈cop 4571 class class class wbr 5081 ‘cfv 6458 ℕcn 12019 𝔼cee 27301 Cgrccgr 27303 Colinear ccolin 34384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-z 12366 df-uz 12629 df-rp 12777 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-sum 15443 df-ee 27304 df-btwn 27305 df-cgr 27306 df-ofs 34330 df-colinear 34386 df-ifs 34387 df-cgr3 34388 df-fs 34389 |
This theorem is referenced by: btwnconn1lem12 34445 |
Copyright terms: Public domain | W3C validator |