![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linecgrand | Structured version Visualization version GIF version |
Description: Deduction form of linecgr 36076. (Contributed by Scott Fenton, 14-Oct-2013.) |
Ref | Expression |
---|---|
linecgrand.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
linecgrand.2 | ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) |
linecgrand.3 | ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) |
linecgrand.4 | ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) |
linecgrand.5 | ⊢ (𝜑 → 𝑃 ∈ (𝔼‘𝑁)) |
linecgrand.6 | ⊢ (𝜑 → 𝑄 ∈ (𝔼‘𝑁)) |
linecgrand.7 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ≠ 𝐵) |
linecgrand.8 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Colinear 〈𝐵, 𝐶〉) |
linecgrand.9 | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉) |
linecgrand.10 | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉) |
Ref | Expression |
---|---|
linecgrand | ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linecgrand.7 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ≠ 𝐵) | |
2 | linecgrand.8 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Colinear 〈𝐵, 𝐶〉) | |
3 | 1, 2 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉)) |
4 | linecgrand.9 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉) | |
5 | linecgrand.10 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉) | |
6 | 4, 5 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) |
7 | linecgrand.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
8 | linecgrand.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) | |
9 | linecgrand.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) | |
10 | linecgrand.4 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) | |
11 | linecgrand.5 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (𝔼‘𝑁)) | |
12 | linecgrand.6 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝔼‘𝑁)) | |
13 | linecgr 36076 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) | |
14 | 7, 8, 9, 10, 11, 12, 13 | syl132anc 1389 | . . 3 ⊢ (𝜑 → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) |
15 | 14 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) |
16 | 3, 6, 15 | mp2and 699 | 1 ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2940 〈cop 4640 class class class wbr 5151 ‘cfv 6569 ℕcn 12273 𝔼cee 28929 Cgrccgr 28931 Colinear ccolin 36032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-sum 15729 df-ee 28932 df-btwn 28933 df-cgr 28934 df-ofs 35978 df-colinear 36034 df-ifs 36035 df-cgr3 36036 df-fs 36037 |
This theorem is referenced by: btwnconn1lem12 36093 |
Copyright terms: Public domain | W3C validator |