Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linecgrand Structured version   Visualization version   GIF version

Theorem linecgrand 35054
Description: Deduction form of linecgr 35053. (Contributed by Scott Fenton, 14-Oct-2013.)
Hypotheses
Ref Expression
linecgrand.1 (𝜑𝑁 ∈ ℕ)
linecgrand.2 (𝜑𝐴 ∈ (𝔼‘𝑁))
linecgrand.3 (𝜑𝐵 ∈ (𝔼‘𝑁))
linecgrand.4 (𝜑𝐶 ∈ (𝔼‘𝑁))
linecgrand.5 (𝜑𝑃 ∈ (𝔼‘𝑁))
linecgrand.6 (𝜑𝑄 ∈ (𝔼‘𝑁))
linecgrand.7 ((𝜑𝜓) → 𝐴𝐵)
linecgrand.8 ((𝜑𝜓) → 𝐴 Colinear ⟨𝐵, 𝐶⟩)
linecgrand.9 ((𝜑𝜓) → ⟨𝐴, 𝑃⟩Cgr⟨𝐴, 𝑄⟩)
linecgrand.10 ((𝜑𝜓) → ⟨𝐵, 𝑃⟩Cgr⟨𝐵, 𝑄⟩)
Assertion
Ref Expression
linecgrand ((𝜑𝜓) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑄⟩)

Proof of Theorem linecgrand
StepHypRef Expression
1 linecgrand.7 . . 3 ((𝜑𝜓) → 𝐴𝐵)
2 linecgrand.8 . . 3 ((𝜑𝜓) → 𝐴 Colinear ⟨𝐵, 𝐶⟩)
31, 2jca 513 . 2 ((𝜑𝜓) → (𝐴𝐵𝐴 Colinear ⟨𝐵, 𝐶⟩))
4 linecgrand.9 . . 3 ((𝜑𝜓) → ⟨𝐴, 𝑃⟩Cgr⟨𝐴, 𝑄⟩)
5 linecgrand.10 . . 3 ((𝜑𝜓) → ⟨𝐵, 𝑃⟩Cgr⟨𝐵, 𝑄⟩)
64, 5jca 513 . 2 ((𝜑𝜓) → (⟨𝐴, 𝑃⟩Cgr⟨𝐴, 𝑄⟩ ∧ ⟨𝐵, 𝑃⟩Cgr⟨𝐵, 𝑄⟩))
7 linecgrand.1 . . . 4 (𝜑𝑁 ∈ ℕ)
8 linecgrand.2 . . . 4 (𝜑𝐴 ∈ (𝔼‘𝑁))
9 linecgrand.3 . . . 4 (𝜑𝐵 ∈ (𝔼‘𝑁))
10 linecgrand.4 . . . 4 (𝜑𝐶 ∈ (𝔼‘𝑁))
11 linecgrand.5 . . . 4 (𝜑𝑃 ∈ (𝔼‘𝑁))
12 linecgrand.6 . . . 4 (𝜑𝑄 ∈ (𝔼‘𝑁))
13 linecgr 35053 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (((𝐴𝐵𝐴 Colinear ⟨𝐵, 𝐶⟩) ∧ (⟨𝐴, 𝑃⟩Cgr⟨𝐴, 𝑄⟩ ∧ ⟨𝐵, 𝑃⟩Cgr⟨𝐵, 𝑄⟩)) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑄⟩))
147, 8, 9, 10, 11, 12, 13syl132anc 1389 . . 3 (𝜑 → (((𝐴𝐵𝐴 Colinear ⟨𝐵, 𝐶⟩) ∧ (⟨𝐴, 𝑃⟩Cgr⟨𝐴, 𝑄⟩ ∧ ⟨𝐵, 𝑃⟩Cgr⟨𝐵, 𝑄⟩)) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑄⟩))
1514adantr 482 . 2 ((𝜑𝜓) → (((𝐴𝐵𝐴 Colinear ⟨𝐵, 𝐶⟩) ∧ (⟨𝐴, 𝑃⟩Cgr⟨𝐴, 𝑄⟩ ∧ ⟨𝐵, 𝑃⟩Cgr⟨𝐵, 𝑄⟩)) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑄⟩))
163, 6, 15mp2and 698 1 ((𝜑𝜓) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑄⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  wne 2941  cop 4635   class class class wbr 5149  cfv 6544  cn 12212  𝔼cee 28146  Cgrccgr 28148   Colinear ccolin 35009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-ee 28149  df-btwn 28150  df-cgr 28151  df-ofs 34955  df-colinear 35011  df-ifs 35012  df-cgr3 35013  df-fs 35014
This theorem is referenced by:  btwnconn1lem12  35070
  Copyright terms: Public domain W3C validator