| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpat | Structured version Visualization version GIF version | ||
| Description: Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 40148 analog.) TODO: This changes 𝑈𝐶𝑉 in l1cvpat 39159 and l1cvat 39160 to 𝑈 ∈ 𝐻, which in turn change 𝑈 ∈ 𝐻 in islshpcv 39158 to 𝑈𝐶𝑉, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| lshpat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lshpat.p | ⊢ ⊕ = (LSSum‘𝑊) |
| ishpat.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lshpat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lshpat.l | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| lshpat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| lshpat.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
| lshpat.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
| lshpat.m | ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) |
| Ref | Expression |
|---|---|
| lshpat | ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | lshpat.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lshpat.p | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
| 4 | lshpat.a | . 2 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 5 | eqid 2731 | . 2 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
| 6 | lshpat.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | lshpat.l | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
| 8 | ishpat.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 9 | 1, 2, 8, 5, 6 | islshpcv 39158 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈( ⋖L ‘𝑊)(Base‘𝑊)))) |
| 10 | 7, 9 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝑆 ∧ 𝑈( ⋖L ‘𝑊)(Base‘𝑊))) |
| 11 | 10 | simpld 494 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| 12 | lshpat.q | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
| 13 | lshpat.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
| 14 | lshpat.n | . 2 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
| 15 | 10 | simprd 495 | . 2 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(Base‘𝑊)) |
| 16 | lshpat.m | . 2 ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) | |
| 17 | 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16 | l1cvat 39160 | 1 ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 LSSumclsm 19552 LSubSpclss 20870 LVecclvec 21042 LSAtomsclsa 39079 LSHypclsh 39080 ⋖L clcv 39123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-0g 17351 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19042 df-cntz 19235 df-oppg 19264 df-lsm 19554 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-lsatoms 39081 df-lshyp 39082 df-lcv 39124 |
| This theorem is referenced by: lclkrlem2a 41612 lcfrlem20 41667 |
| Copyright terms: Public domain | W3C validator |