Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpat Structured version   Visualization version   GIF version

Theorem lshpat 36976
Description: Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 37963 analog.) TODO: This changes 𝑈𝐶𝑉 in l1cvpat 36974 and l1cvat 36975 to 𝑈𝐻, which in turn change 𝑈𝐻 in islshpcv 36973 to 𝑈𝐶𝑉, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lshpat.s 𝑆 = (LSubSp‘𝑊)
lshpat.p = (LSSum‘𝑊)
ishpat.h 𝐻 = (LSHyp‘𝑊)
lshpat.a 𝐴 = (LSAtoms‘𝑊)
lshpat.w (𝜑𝑊 ∈ LVec)
lshpat.l (𝜑𝑈𝐻)
lshpat.q (𝜑𝑄𝐴)
lshpat.r (𝜑𝑅𝐴)
lshpat.n (𝜑𝑄𝑅)
lshpat.m (𝜑 → ¬ 𝑄𝑈)
Assertion
Ref Expression
lshpat (𝜑 → ((𝑄 𝑅) ∩ 𝑈) ∈ 𝐴)

Proof of Theorem lshpat
StepHypRef Expression
1 eqid 2739 . 2 (Base‘𝑊) = (Base‘𝑊)
2 lshpat.s . 2 𝑆 = (LSubSp‘𝑊)
3 lshpat.p . 2 = (LSSum‘𝑊)
4 lshpat.a . 2 𝐴 = (LSAtoms‘𝑊)
5 eqid 2739 . 2 ( ⋖L𝑊) = ( ⋖L𝑊)
6 lshpat.w . 2 (𝜑𝑊 ∈ LVec)
7 lshpat.l . . . 4 (𝜑𝑈𝐻)
8 ishpat.h . . . . 5 𝐻 = (LSHyp‘𝑊)
91, 2, 8, 5, 6islshpcv 36973 . . . 4 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈( ⋖L𝑊)(Base‘𝑊))))
107, 9mpbid 235 . . 3 (𝜑 → (𝑈𝑆𝑈( ⋖L𝑊)(Base‘𝑊)))
1110simpld 498 . 2 (𝜑𝑈𝑆)
12 lshpat.q . 2 (𝜑𝑄𝐴)
13 lshpat.r . 2 (𝜑𝑅𝐴)
14 lshpat.n . 2 (𝜑𝑄𝑅)
1510simprd 499 . 2 (𝜑𝑈( ⋖L𝑊)(Base‘𝑊))
16 lshpat.m . 2 (𝜑 → ¬ 𝑄𝑈)
171, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16l1cvat 36975 1 (𝜑 → ((𝑄 𝑅) ∩ 𝑈) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2943  cin 3883  wss 3884   class class class wbr 5070  cfv 6415  (class class class)co 7252  Basecbs 16815  LSSumclsm 19129  LSubSpclss 20083  LVecclvec 20254  LSAtomsclsa 36894  LSHypclsh 36895  L clcv 36938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-1st 7801  df-2nd 7802  df-tpos 8010  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-er 8433  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-3 11942  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843  df-plusg 16876  df-mulr 16877  df-0g 17044  df-mre 17187  df-mrc 17188  df-acs 17190  df-mgm 18216  df-sgrp 18265  df-mnd 18276  df-submnd 18321  df-grp 18470  df-minusg 18471  df-sbg 18472  df-subg 18642  df-cntz 18813  df-oppg 18840  df-lsm 19131  df-cmn 19278  df-abl 19279  df-mgp 19611  df-ur 19628  df-ring 19675  df-oppr 19752  df-dvdsr 19773  df-unit 19774  df-invr 19804  df-drng 19883  df-lmod 20015  df-lss 20084  df-lsp 20124  df-lvec 20255  df-lsatoms 36896  df-lshyp 36897  df-lcv 36939
This theorem is referenced by:  lclkrlem2a  39427  lcfrlem20  39482
  Copyright terms: Public domain W3C validator