Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpat | Structured version Visualization version GIF version |
Description: Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 37963 analog.) TODO: This changes 𝑈𝐶𝑉 in l1cvpat 36974 and l1cvat 36975 to 𝑈 ∈ 𝐻, which in turn change 𝑈 ∈ 𝐻 in islshpcv 36973 to 𝑈𝐶𝑉, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
lshpat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lshpat.p | ⊢ ⊕ = (LSSum‘𝑊) |
ishpat.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpat.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lshpat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpat.l | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpat.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
lshpat.r | ⊢ (𝜑 → 𝑅 ∈ 𝐴) |
lshpat.n | ⊢ (𝜑 → 𝑄 ≠ 𝑅) |
lshpat.m | ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) |
Ref | Expression |
---|---|
lshpat | ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lshpat.s | . 2 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lshpat.p | . 2 ⊢ ⊕ = (LSSum‘𝑊) | |
4 | lshpat.a | . 2 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
5 | eqid 2739 | . 2 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
6 | lshpat.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | lshpat.l | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
8 | ishpat.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
9 | 1, 2, 8, 5, 6 | islshpcv 36973 | . . . 4 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈( ⋖L ‘𝑊)(Base‘𝑊)))) |
10 | 7, 9 | mpbid 235 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝑆 ∧ 𝑈( ⋖L ‘𝑊)(Base‘𝑊))) |
11 | 10 | simpld 498 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
12 | lshpat.q | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
13 | lshpat.r | . 2 ⊢ (𝜑 → 𝑅 ∈ 𝐴) | |
14 | lshpat.n | . 2 ⊢ (𝜑 → 𝑄 ≠ 𝑅) | |
15 | 10 | simprd 499 | . 2 ⊢ (𝜑 → 𝑈( ⋖L ‘𝑊)(Base‘𝑊)) |
16 | lshpat.m | . 2 ⊢ (𝜑 → ¬ 𝑄 ⊆ 𝑈) | |
17 | 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16 | l1cvat 36975 | 1 ⊢ (𝜑 → ((𝑄 ⊕ 𝑅) ∩ 𝑈) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ∩ cin 3883 ⊆ wss 3884 class class class wbr 5070 ‘cfv 6415 (class class class)co 7252 Basecbs 16815 LSSumclsm 19129 LSubSpclss 20083 LVecclvec 20254 LSAtomsclsa 36894 LSHypclsh 36895 ⋖L clcv 36938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-tpos 8010 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-mulr 16877 df-0g 17044 df-mre 17187 df-mrc 17188 df-acs 17190 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-submnd 18321 df-grp 18470 df-minusg 18471 df-sbg 18472 df-subg 18642 df-cntz 18813 df-oppg 18840 df-lsm 19131 df-cmn 19278 df-abl 19279 df-mgp 19611 df-ur 19628 df-ring 19675 df-oppr 19752 df-dvdsr 19773 df-unit 19774 df-invr 19804 df-drng 19883 df-lmod 20015 df-lss 20084 df-lsp 20124 df-lvec 20255 df-lsatoms 36896 df-lshyp 36897 df-lcv 36939 |
This theorem is referenced by: lclkrlem2a 39427 lcfrlem20 39482 |
Copyright terms: Public domain | W3C validator |