Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpat Structured version   Visualization version   GIF version

Theorem lshpat 35130
Description: Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 36117 analog.) TODO: This changes 𝑈𝐶𝑉 in l1cvpat 35128 and l1cvat 35129 to 𝑈𝐻, which in turn change 𝑈𝐻 in islshpcv 35127 to 𝑈𝐶𝑉, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.)
Hypotheses
Ref Expression
lshpat.s 𝑆 = (LSubSp‘𝑊)
lshpat.p = (LSSum‘𝑊)
ishpat.h 𝐻 = (LSHyp‘𝑊)
lshpat.a 𝐴 = (LSAtoms‘𝑊)
lshpat.w (𝜑𝑊 ∈ LVec)
lshpat.l (𝜑𝑈𝐻)
lshpat.q (𝜑𝑄𝐴)
lshpat.r (𝜑𝑅𝐴)
lshpat.n (𝜑𝑄𝑅)
lshpat.m (𝜑 → ¬ 𝑄𝑈)
Assertion
Ref Expression
lshpat (𝜑 → ((𝑄 𝑅) ∩ 𝑈) ∈ 𝐴)

Proof of Theorem lshpat
StepHypRef Expression
1 eqid 2825 . 2 (Base‘𝑊) = (Base‘𝑊)
2 lshpat.s . 2 𝑆 = (LSubSp‘𝑊)
3 lshpat.p . 2 = (LSSum‘𝑊)
4 lshpat.a . 2 𝐴 = (LSAtoms‘𝑊)
5 eqid 2825 . 2 ( ⋖L𝑊) = ( ⋖L𝑊)
6 lshpat.w . 2 (𝜑𝑊 ∈ LVec)
7 lshpat.l . . . 4 (𝜑𝑈𝐻)
8 ishpat.h . . . . 5 𝐻 = (LSHyp‘𝑊)
91, 2, 8, 5, 6islshpcv 35127 . . . 4 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈( ⋖L𝑊)(Base‘𝑊))))
107, 9mpbid 224 . . 3 (𝜑 → (𝑈𝑆𝑈( ⋖L𝑊)(Base‘𝑊)))
1110simpld 490 . 2 (𝜑𝑈𝑆)
12 lshpat.q . 2 (𝜑𝑄𝐴)
13 lshpat.r . 2 (𝜑𝑅𝐴)
14 lshpat.n . 2 (𝜑𝑄𝑅)
1510simprd 491 . 2 (𝜑𝑈( ⋖L𝑊)(Base‘𝑊))
16 lshpat.m . 2 (𝜑 → ¬ 𝑄𝑈)
171, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16l1cvat 35129 1 (𝜑 → ((𝑄 𝑅) ∩ 𝑈) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  cin 3797  wss 3798   class class class wbr 4875  cfv 6127  (class class class)co 6910  Basecbs 16229  LSSumclsm 18407  LSubSpclss 19295  LVecclvec 19468  LSAtomsclsa 35048  LSHypclsh 35049  L clcv 35092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-tpos 7622  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-3 11422  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-0g 16462  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-cntz 18107  df-oppg 18133  df-lsm 18409  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-oppr 18984  df-dvdsr 19002  df-unit 19003  df-invr 19033  df-drng 19112  df-lmod 19228  df-lss 19296  df-lsp 19338  df-lvec 19469  df-lsatoms 35050  df-lshyp 35051  df-lcv 35093
This theorem is referenced by:  lclkrlem2a  37581  lcfrlem20  37636
  Copyright terms: Public domain W3C validator