![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpat | Structured version Visualization version GIF version |
Description: Create an atom under a hyperplane. Part of proof of Lemma B in [Crawley] p. 112. (lhpat 39219 analog.) TODO: This changes ππΆπ in l1cvpat 38229 and l1cvat 38230 to π β π», which in turn change π β π» in islshpcv 38228 to ππΆπ, with a couple of conversions of span to atom. Seems convoluted. Would a direct proof be better? (Contributed by NM, 11-Jan-2015.) |
Ref | Expression |
---|---|
lshpat.s | β’ π = (LSubSpβπ) |
lshpat.p | β’ β = (LSSumβπ) |
ishpat.h | β’ π» = (LSHypβπ) |
lshpat.a | β’ π΄ = (LSAtomsβπ) |
lshpat.w | β’ (π β π β LVec) |
lshpat.l | β’ (π β π β π») |
lshpat.q | β’ (π β π β π΄) |
lshpat.r | β’ (π β π β π΄) |
lshpat.n | β’ (π β π β π ) |
lshpat.m | β’ (π β Β¬ π β π) |
Ref | Expression |
---|---|
lshpat | β’ (π β ((π β π ) β© π) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . 2 β’ (Baseβπ) = (Baseβπ) | |
2 | lshpat.s | . 2 β’ π = (LSubSpβπ) | |
3 | lshpat.p | . 2 β’ β = (LSSumβπ) | |
4 | lshpat.a | . 2 β’ π΄ = (LSAtomsβπ) | |
5 | eqid 2730 | . 2 β’ ( βL βπ) = ( βL βπ) | |
6 | lshpat.w | . 2 β’ (π β π β LVec) | |
7 | lshpat.l | . . . 4 β’ (π β π β π») | |
8 | ishpat.h | . . . . 5 β’ π» = (LSHypβπ) | |
9 | 1, 2, 8, 5, 6 | islshpcv 38228 | . . . 4 β’ (π β (π β π» β (π β π β§ π( βL βπ)(Baseβπ)))) |
10 | 7, 9 | mpbid 231 | . . 3 β’ (π β (π β π β§ π( βL βπ)(Baseβπ))) |
11 | 10 | simpld 493 | . 2 β’ (π β π β π) |
12 | lshpat.q | . 2 β’ (π β π β π΄) | |
13 | lshpat.r | . 2 β’ (π β π β π΄) | |
14 | lshpat.n | . 2 β’ (π β π β π ) | |
15 | 10 | simprd 494 | . 2 β’ (π β π( βL βπ)(Baseβπ)) |
16 | lshpat.m | . 2 β’ (π β Β¬ π β π) | |
17 | 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16 | l1cvat 38230 | 1 β’ (π β ((π β π ) β© π) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β wne 2938 β© cin 3948 β wss 3949 class class class wbr 5149 βcfv 6544 (class class class)co 7413 Basecbs 17150 LSSumclsm 19545 LSubSpclss 20688 LVecclvec 20859 LSAtomsclsa 38149 LSHypclsh 38150 βL clcv 38193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-0g 17393 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18708 df-grp 18860 df-minusg 18861 df-sbg 18862 df-subg 19041 df-cntz 19224 df-oppg 19253 df-lsm 19547 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-oppr 20227 df-dvdsr 20250 df-unit 20251 df-invr 20281 df-drng 20504 df-lmod 20618 df-lss 20689 df-lsp 20729 df-lvec 20860 df-lsatoms 38151 df-lshyp 38152 df-lcv 38194 |
This theorem is referenced by: lclkrlem2a 40683 lcfrlem20 40738 |
Copyright terms: Public domain | W3C validator |