Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem10 Structured version   Visualization version   GIF version

Theorem mapdpglem10 40552
Description: Lemma for mapdpg 40577. Baer p. 45, line 6: "Hence Fx=Fy, an impossibility." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHypβ€˜πΎ)
mapdpglem.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
mapdpglem.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
mapdpglem.v 𝑉 = (Baseβ€˜π‘ˆ)
mapdpglem.s βˆ’ = (-gβ€˜π‘ˆ)
mapdpglem.n 𝑁 = (LSpanβ€˜π‘ˆ)
mapdpglem.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
mapdpglem.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
mapdpglem.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
mapdpglem.y (πœ‘ β†’ π‘Œ ∈ 𝑉)
mapdpglem1.p βŠ• = (LSSumβ€˜πΆ)
mapdpglem2.j 𝐽 = (LSpanβ€˜πΆ)
mapdpglem3.f 𝐹 = (Baseβ€˜πΆ)
mapdpglem3.te (πœ‘ β†’ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋})) βŠ• (π‘€β€˜(π‘β€˜{π‘Œ}))))
mapdpglem3.a 𝐴 = (Scalarβ€˜π‘ˆ)
mapdpglem3.b 𝐡 = (Baseβ€˜π΄)
mapdpglem3.t Β· = ( ·𝑠 β€˜πΆ)
mapdpglem3.r 𝑅 = (-gβ€˜πΆ)
mapdpglem3.g (πœ‘ β†’ 𝐺 ∈ 𝐹)
mapdpglem3.e (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
mapdpglem4.q 𝑄 = (0gβ€˜π‘ˆ)
mapdpglem.ne (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
mapdpglem4.jt (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑}))
mapdpglem4.z 0 = (0gβ€˜π΄)
mapdpglem4.g4 (πœ‘ β†’ 𝑔 ∈ 𝐡)
mapdpglem4.z4 (πœ‘ β†’ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ})))
mapdpglem4.t4 (πœ‘ β†’ 𝑑 = ((𝑔 Β· 𝐺)𝑅𝑧))
mapdpglem4.xn (πœ‘ β†’ 𝑋 β‰  𝑄)
mapdpglem4.g0 (πœ‘ β†’ 𝑔 = 0 )
Assertion
Ref Expression
mapdpglem10 (πœ‘ β†’ (π‘β€˜{𝑋}) = (π‘β€˜{π‘Œ}))
Distinct variable groups:   𝑑, βˆ’   𝑑,𝐢   𝑑,𝐽   𝑑,𝑀   𝑑,𝑁   𝑑,𝑋   𝑑,π‘Œ   𝐡,𝑔   𝑧,𝑔,𝐢   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   Β· ,𝑔,𝑧   𝑔,π‘Œ,𝑧,𝑑
Allowed substitution hints:   πœ‘(𝑧,𝑑,𝑔)   𝐴(𝑧,𝑑,𝑔)   𝐡(𝑧,𝑑)   βŠ• (𝑧,𝑑,𝑔)   𝑄(𝑧,𝑑,𝑔)   𝑅(𝑑)   Β· (𝑑)   π‘ˆ(𝑧,𝑑,𝑔)   𝐹(𝑧,𝑑)   𝐺(𝑑)   𝐻(𝑧,𝑑,𝑔)   𝐾(𝑧,𝑑,𝑔)   βˆ’ (𝑧,𝑔)   𝑉(𝑧,𝑑,𝑔)   π‘Š(𝑧,𝑑,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑑,𝑔)

Proof of Theorem mapdpglem10
StepHypRef Expression
1 mapdpglem.v . 2 𝑉 = (Baseβ€˜π‘ˆ)
2 mapdpglem4.q . 2 𝑄 = (0gβ€˜π‘ˆ)
3 mapdpglem.n . 2 𝑁 = (LSpanβ€˜π‘ˆ)
4 mapdpglem.h . . 3 𝐻 = (LHypβ€˜πΎ)
5 mapdpglem.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
6 mapdpglem.k . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
74, 5, 6dvhlvec 39980 . 2 (πœ‘ β†’ π‘ˆ ∈ LVec)
8 mapdpglem.y . 2 (πœ‘ β†’ π‘Œ ∈ 𝑉)
9 mapdpglem.m . . 3 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
10 mapdpglem.s . . 3 βˆ’ = (-gβ€˜π‘ˆ)
11 mapdpglem.c . . 3 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
12 mapdpglem.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑉)
13 mapdpglem1.p . . 3 βŠ• = (LSSumβ€˜πΆ)
14 mapdpglem2.j . . 3 𝐽 = (LSpanβ€˜πΆ)
15 mapdpglem3.f . . 3 𝐹 = (Baseβ€˜πΆ)
16 mapdpglem3.te . . 3 (πœ‘ β†’ 𝑑 ∈ ((π‘€β€˜(π‘β€˜{𝑋})) βŠ• (π‘€β€˜(π‘β€˜{π‘Œ}))))
17 mapdpglem3.a . . 3 𝐴 = (Scalarβ€˜π‘ˆ)
18 mapdpglem3.b . . 3 𝐡 = (Baseβ€˜π΄)
19 mapdpglem3.t . . 3 Β· = ( ·𝑠 β€˜πΆ)
20 mapdpglem3.r . . 3 𝑅 = (-gβ€˜πΆ)
21 mapdpglem3.g . . 3 (πœ‘ β†’ 𝐺 ∈ 𝐹)
22 mapdpglem3.e . . 3 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐺}))
23 mapdpglem.ne . . 3 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
24 mapdpglem4.jt . . 3 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{𝑑}))
25 mapdpglem4.z . . 3 0 = (0gβ€˜π΄)
26 mapdpglem4.g4 . . 3 (πœ‘ β†’ 𝑔 ∈ 𝐡)
27 mapdpglem4.z4 . . 3 (πœ‘ β†’ 𝑧 ∈ (π‘€β€˜(π‘β€˜{π‘Œ})))
28 mapdpglem4.t4 . . 3 (πœ‘ β†’ 𝑑 = ((𝑔 Β· 𝐺)𝑅𝑧))
29 mapdpglem4.xn . . 3 (πœ‘ β†’ 𝑋 β‰  𝑄)
30 mapdpglem4.g0 . . 3 (πœ‘ β†’ 𝑔 = 0 )
314, 9, 5, 1, 10, 3, 11, 6, 12, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 2, 23, 24, 25, 26, 27, 28, 29, 30mapdpglem9 40551 . 2 (πœ‘ β†’ 𝑋 ∈ (π‘β€˜{π‘Œ}))
321, 2, 3, 7, 8, 31, 29lspsneleq 20728 1 (πœ‘ β†’ (π‘β€˜{𝑋}) = (π‘β€˜{π‘Œ}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  {csn 4629  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  Scalarcsca 17200   ·𝑠 cvsca 17201  0gc0g 17385  -gcsg 18821  LSSumclsm 19502  LSpanclspn 20582  HLchlt 38220  LHypclh 38855  DVecHcdvh 39949  LCDualclcd 40457  mapdcmpd 40495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-riotaBAD 37823
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-tpos 8211  df-undef 8258  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-0g 17387  df-mre 17530  df-mrc 17531  df-acs 17533  df-proset 18248  df-poset 18266  df-plt 18283  df-lub 18299  df-glb 18300  df-join 18301  df-meet 18302  df-p0 18378  df-p1 18379  df-lat 18385  df-clat 18452  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-subg 19003  df-cntz 19181  df-oppg 19210  df-lsm 19504  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-oppr 20150  df-dvdsr 20171  df-unit 20172  df-invr 20202  df-dvr 20215  df-drng 20359  df-lmod 20473  df-lss 20543  df-lsp 20583  df-lvec 20714  df-lsatoms 37846  df-lshyp 37847  df-lcv 37889  df-lfl 37928  df-lkr 37956  df-ldual 37994  df-oposet 38046  df-ol 38048  df-oml 38049  df-covers 38136  df-ats 38137  df-atl 38168  df-cvlat 38192  df-hlat 38221  df-llines 38369  df-lplanes 38370  df-lvols 38371  df-lines 38372  df-psubsp 38374  df-pmap 38375  df-padd 38667  df-lhyp 38859  df-laut 38860  df-ldil 38975  df-ltrn 38976  df-trl 39030  df-tgrp 39614  df-tendo 39626  df-edring 39628  df-dveca 39874  df-disoa 39900  df-dvech 39950  df-dib 40010  df-dic 40044  df-dih 40100  df-doch 40219  df-djh 40266  df-lcdual 40458  df-mapd 40496
This theorem is referenced by:  mapdpglem11  40553
  Copyright terms: Public domain W3C validator