| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mavmulfv | Structured version Visualization version GIF version | ||
| Description: A cell/element in the vector resulting from a multiplication of a vector with a square matrix. (Contributed by AV, 6-Dec-2018.) (Revised by AV, 18-Feb-2019.) (Revised by AV, 23-Feb-2019.) |
| Ref | Expression |
|---|---|
| mavmulval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| mavmulval.m | ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| mavmulval.b | ⊢ 𝐵 = (Base‘𝑅) |
| mavmulval.t | ⊢ · = (.r‘𝑅) |
| mavmulval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| mavmulval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mavmulval.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| mavmulval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
| mavmulfv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
| Ref | Expression |
|---|---|
| mavmulfv | ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mavmulval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | mavmulval.m | . . 3 ⊢ × = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 3 | mavmulval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | mavmulval.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 5 | mavmulval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 6 | mavmulval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 7 | mavmulval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) | |
| 8 | mavmulval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mavmulval 22455 | . 2 ⊢ (𝜑 → (𝑋 × 𝑌) = (𝑖 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))))) |
| 10 | oveq1 7348 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) |
| 12 | 11 | oveq1d 7356 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑖𝑋𝑗) · (𝑌‘𝑗)) = ((𝐼𝑋𝑗) · (𝑌‘𝑗))) |
| 13 | 12 | mpteq2dv 5180 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) |
| 14 | 13 | oveq2d 7357 | . 2 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
| 15 | mavmulfv.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
| 16 | ovexd 7376 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗)))) ∈ V) | |
| 17 | 9, 14, 15, 16 | fvmptd 6931 | 1 ⊢ (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌‘𝑗))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ↑m cmap 8745 Fincfn 8864 Basecbs 17115 .rcmulr 17157 Σg cgsu 17339 Mat cmat 22317 maVecMul cmvmul 22450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-prds 17346 df-pws 17348 df-sra 21102 df-rgmod 21103 df-dsmm 21664 df-frlm 21679 df-mat 22318 df-mvmul 22451 |
| This theorem is referenced by: mavmulass 22459 mulmarep1gsum2 22484 |
| Copyright terms: Public domain | W3C validator |