Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frlmbasf | Structured version Visualization version GIF version |
Description: Elements of the free module are functions. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlmbasmap.n | ⊢ 𝑁 = (Base‘𝑅) |
frlmbasmap.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
frlmbasf | ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmval.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | frlmbasmap.n | . . 3 ⊢ 𝑁 = (Base‘𝑅) | |
3 | frlmbasmap.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
4 | 1, 2, 3 | frlmbasmap 21037 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (𝑁 ↑m 𝐼)) |
5 | 2 | fvexi 6823 | . . . 4 ⊢ 𝑁 ∈ V |
6 | elmapg 8674 | . . . 4 ⊢ ((𝑁 ∈ V ∧ 𝐼 ∈ 𝑊) → (𝑋 ∈ (𝑁 ↑m 𝐼) ↔ 𝑋:𝐼⟶𝑁)) | |
7 | 5, 6 | mpan 687 | . . 3 ⊢ (𝐼 ∈ 𝑊 → (𝑋 ∈ (𝑁 ↑m 𝐼) ↔ 𝑋:𝐼⟶𝑁)) |
8 | 7 | adantr 481 | . 2 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (𝑁 ↑m 𝐼) ↔ 𝑋:𝐼⟶𝑁)) |
9 | 4, 8 | mpbid 231 | 1 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 ↑m cmap 8661 Basecbs 16979 freeLMod cfrlm 21024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-supp 8023 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-map 8663 df-ixp 8732 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-fsupp 9197 df-sup 9269 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-z 12390 df-dec 12508 df-uz 12653 df-fz 13310 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-sca 17045 df-vsca 17046 df-ip 17047 df-tset 17048 df-ple 17049 df-ds 17051 df-hom 17053 df-cco 17054 df-0g 17219 df-prds 17225 df-pws 17227 df-sra 20505 df-rgmod 20506 df-dsmm 21010 df-frlm 21025 |
This theorem is referenced by: elfrlmbasn0 21041 frlmvscaval 21046 frlmgsum 21050 frlmsplit2 21051 frlmsslss2 21053 mpofrlmd 21055 uvcresum 21071 frlmssuvc1 21072 frlmssuvc2 21073 frlmsslsp 21074 frlmlbs 21075 frlmup1 21076 frlmup2 21077 islindf4 21116 rrxcph 24627 frlmfzwrd 40442 frlmfzowrd 40443 frlmfzolen 40444 frlmfzoccat 40446 frlmvscadiccat 40447 frlmsnic 40473 prjspnfv01 40671 prjspner01 40672 prjspner1 40673 0prjspnrel 40674 |
Copyright terms: Public domain | W3C validator |