Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c3 Structured version   Visualization version   GIF version

Theorem aks6d1c3 42065
Description: Claim 3 of Theorem 6.1 of the AKS inequality lemma. https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 28-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c3.1 (𝜑𝑁 ∈ ℕ)
aks6d1c3.2 (𝜑𝑃 ∈ ℙ)
aks6d1c3.3 (𝜑𝑃𝑁)
aks6d1c3.4 (𝜑𝑅 ∈ ℕ)
aks6d1c3.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c3.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c3.7 𝐿 = (ℤRHom‘𝑌)
aks6d1c3.8 𝑌 = (ℤ/nℤ‘𝑅)
aks6d1c3.9 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Assertion
Ref Expression
aks6d1c3 (𝜑 → ((2 logb 𝑁)↑2) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙   𝜑,𝑘,𝑙
Allowed substitution hints:   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)   𝑌(𝑘,𝑙)

Proof of Theorem aks6d1c3
Dummy variables 𝑖 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12307 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
3 2pos 12336 . . . . 5 0 < 2
43a1i 11 . . . 4 (𝜑 → 0 < 2)
5 aks6d1c3.1 . . . . 5 (𝜑𝑁 ∈ ℕ)
65nnred 12248 . . . 4 (𝜑𝑁 ∈ ℝ)
75nngt0d 12282 . . . 4 (𝜑 → 0 < 𝑁)
8 1red 11229 . . . . . 6 (𝜑 → 1 ∈ ℝ)
9 1lt2 12404 . . . . . . 7 1 < 2
109a1i 11 . . . . . 6 (𝜑 → 1 < 2)
118, 10ltned 11364 . . . . 5 (𝜑 → 1 ≠ 2)
1211necomd 2986 . . . 4 (𝜑 → 2 ≠ 1)
132, 4, 6, 7, 12relogbcld 41915 . . 3 (𝜑 → (2 logb 𝑁) ∈ ℝ)
1413resqcld 14133 . 2 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
15 aks6d1c3.4 . . . 4 (𝜑𝑅 ∈ ℕ)
165nnzd 12608 . . . 4 (𝜑𝑁 ∈ ℤ)
17 aks6d1c3.5 . . . 4 (𝜑 → (𝑁 gcd 𝑅) = 1)
18 odzcl 16800 . . . 4 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
1915, 16, 17, 18syl3anc 1372 . . 3 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
2019nnred 12248 . 2 (𝜑 → ((od𝑅)‘𝑁) ∈ ℝ)
21 aks6d1c3.2 . . . 4 (𝜑𝑃 ∈ ℙ)
22 aks6d1c3.3 . . . 4 (𝜑𝑃𝑁)
23 aks6d1c3.6 . . . 4 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
24 aks6d1c3.7 . . . 4 𝐿 = (ℤRHom‘𝑌)
25 aks6d1c3.8 . . . 4 𝑌 = (ℤ/nℤ‘𝑅)
265, 21, 22, 15, 17, 23, 24, 25hashscontpowcl 42062 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
2726nn0red 12556 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
28 aks6d1c3.9 . 2 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
29 nfv 1913 . . . 4 𝑥𝜑
30 prmnn 16680 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3121, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
3231nnzd 12608 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
3332adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑃 ∈ ℤ)
3433adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → 𝑃 ∈ ℤ)
35 simplr 768 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3634, 35zexpcld 14095 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
3731nnne0d 12283 . . . . . . . . . . . . . 14 (𝜑𝑃 ≠ 0)
38 dvdsval2 16262 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
3932, 37, 16, 38syl3anc 1372 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
4022, 39mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
4140adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ)
4241adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ)
43 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → 𝑙 ∈ ℕ0)
4442, 43zexpcld 14095 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → ((𝑁 / 𝑃)↑𝑙) ∈ ℤ)
4536, 44zmulcld 12696 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ)
4645ralrimiva 3130 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ∀𝑙 ∈ ℕ0 ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ)
4746ralrimiva 3130 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ0𝑙 ∈ ℕ0 ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ)
4823fmpo 8062 . . . . . 6 (∀𝑘 ∈ ℕ0𝑙 ∈ ℕ0 ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ ↔ 𝐸:(ℕ0 × ℕ0)⟶ℤ)
4947, 48sylib 218 . . . . 5 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
5049ffund 6707 . . . 4 (𝜑 → Fun 𝐸)
5149ffvelcdmda 7071 . . . 4 ((𝜑𝑥 ∈ (ℕ0 × ℕ0)) → (𝐸𝑥) ∈ ℤ)
5229, 50, 51funimassd 6942 . . 3 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
5349ffnd 6704 . . . . . . 7 (𝜑𝐸 Fn (ℕ0 × ℕ0))
5453adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐸 Fn (ℕ0 × ℕ0))
55 simpr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
5655, 55opelxpd 5691 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0))
5754, 56, 56fnfvimad 7223 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝐸‘⟨𝑖, 𝑖⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)))
58 vex 3461 . . . . . . . . . . . . . 14 𝑘 ∈ V
59 vex 3461 . . . . . . . . . . . . . 14 𝑙 ∈ V
6058, 59op1std 7993 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑘, 𝑙⟩ → (1st𝑞) = 𝑘)
6160oveq2d 7416 . . . . . . . . . . . 12 (𝑞 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑞)) = (𝑃𝑘))
6258, 59op2ndd 7994 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑘, 𝑙⟩ → (2nd𝑞) = 𝑙)
6362oveq2d 7416 . . . . . . . . . . . 12 (𝑞 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑞)) = ((𝑁 / 𝑃)↑𝑙))
6461, 63oveq12d 7418 . . . . . . . . . . 11 (𝑞 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
6564mpompt 7516 . . . . . . . . . 10 (𝑞 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
6623, 65eqtr4i 2760 . . . . . . . . 9 𝐸 = (𝑞 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞))))
6766a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝐸 = (𝑞 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞)))))
68 simpr 484 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → 𝑞 = ⟨𝑖, 𝑖⟩)
6968fveq2d 6877 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → (1st𝑞) = (1st ‘⟨𝑖, 𝑖⟩))
7069oveq2d 7416 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → (𝑃↑(1st𝑞)) = (𝑃↑(1st ‘⟨𝑖, 𝑖⟩)))
7168fveq2d 6877 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → (2nd𝑞) = (2nd ‘⟨𝑖, 𝑖⟩))
7271oveq2d 7416 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → ((𝑁 / 𝑃)↑(2nd𝑞)) = ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩)))
7370, 72oveq12d 7418 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞))) = ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))))
74 opelxp 5688 . . . . . . . . . 10 (⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0) ↔ (𝑖 ∈ ℕ0𝑖 ∈ ℕ0))
7556, 74sylib 218 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑖 ∈ ℕ0𝑖 ∈ ℕ0))
7675, 74sylibr 234 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0))
7732adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑃 ∈ ℤ)
78 xp1st 8015 . . . . . . . . . . 11 (⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0) → (1st ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
7956, 78syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (1st ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
8077, 79zexpcld 14095 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) ∈ ℤ)
8140adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ)
82 xp2nd 8016 . . . . . . . . . . 11 (⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0) → (2nd ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
8356, 82syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (2nd ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
8481, 83zexpcld 14095 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩)) ∈ ℤ)
8580, 84zmulcld 12696 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))) ∈ ℤ)
8667, 73, 76, 85fvmptd 6990 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝐸‘⟨𝑖, 𝑖⟩) = ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))))
87 vex 3461 . . . . . . . . . . . 12 𝑖 ∈ V
8887, 87op1st 7991 . . . . . . . . . . 11 (1st ‘⟨𝑖, 𝑖⟩) = 𝑖
8988a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (1st ‘⟨𝑖, 𝑖⟩) = 𝑖)
9089oveq2d 7416 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) = (𝑃𝑖))
9187, 87op2nd 7992 . . . . . . . . . . 11 (2nd ‘⟨𝑖, 𝑖⟩) = 𝑖
9291a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (2nd ‘⟨𝑖, 𝑖⟩) = 𝑖)
9392oveq2d 7416 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩)) = ((𝑁 / 𝑃)↑𝑖))
9490, 93oveq12d 7418 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))) = ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑖)))
956recnd 11256 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
9695adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑁 ∈ ℂ)
9777zcnd 12691 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑃 ∈ ℂ)
9837adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑃 ≠ 0)
9996, 97, 98divcan2d 12012 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → (𝑃 · (𝑁 / 𝑃)) = 𝑁)
10099eqcomd 2740 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑁 = (𝑃 · (𝑁 / 𝑃)))
101100oveq1d 7415 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑁𝑖) = ((𝑃 · (𝑁 / 𝑃))↑𝑖))
10281zcnd 12691 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℂ)
10397, 102, 55mulexpd 14169 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ((𝑃 · (𝑁 / 𝑃))↑𝑖) = ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑖)))
104101, 103eqtr2d 2770 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑖)) = (𝑁𝑖))
10594, 104eqtrd 2769 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))) = (𝑁𝑖))
10686, 105eqtrd 2769 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝐸‘⟨𝑖, 𝑖⟩) = (𝑁𝑖))
107106eleq1d 2818 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → ((𝐸‘⟨𝑖, 𝑖⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)) ↔ (𝑁𝑖) ∈ (𝐸 “ (ℕ0 × ℕ0))))
10857, 107mpbid 232 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑁𝑖) ∈ (𝐸 “ (ℕ0 × ℕ0)))
109108ralrimiva 3130 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑁𝑖) ∈ (𝐸 “ (ℕ0 × ℕ0)))
11052, 5, 109, 15, 17, 24, 25hashscontpow 42064 . 2 (𝜑 → ((od𝑅)‘𝑁) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
11114, 20, 27, 28, 110ltletrd 11388 1 (𝜑 → ((2 logb 𝑁)↑2) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  cop 4605   class class class wbr 5117  cmpt 5199   × cxp 5650  cima 5655   Fn wfn 6523  wf 6524  cfv 6528  (class class class)co 7400  cmpo 7402  1st c1st 7981  2nd c2nd 7982  cc 11120  cr 11121  0cc0 11122  1c1 11123   · cmul 11127   < clt 11262   / cdiv 11887  cn 12233  2c2 12288  0cn0 12494  cz 12581  cexp 14069  chash 14338  cdvds 16259   gcd cgcd 16500  cprime 16677  odcodz 16769  ℤRHomczrh 21447  ℤ/nczn 21450   logb clogb 26712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200  ax-addf 11201  ax-mulf 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-tpos 8220  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-er 8714  df-ec 8716  df-qs 8720  df-map 8837  df-pm 8838  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-fi 9418  df-sup 9449  df-inf 9450  df-oi 9517  df-dju 9908  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-q 12958  df-rp 13002  df-xneg 13121  df-xadd 13122  df-xmul 13123  df-ioo 13358  df-ioc 13359  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-fac 14282  df-bc 14311  df-hash 14339  df-shft 15075  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-limsup 15476  df-clim 15493  df-rlim 15494  df-sum 15692  df-ef 16072  df-sin 16074  df-cos 16075  df-pi 16077  df-dvds 16260  df-gcd 16501  df-prm 16678  df-odz 16771  df-phi 16772  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-xrs 17503  df-qtop 17508  df-imas 17509  df-qus 17510  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18748  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19038  df-subg 19093  df-nsg 19094  df-eqg 19095  df-ghm 19183  df-cntz 19287  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-oppr 20284  df-dvdsr 20304  df-rhm 20419  df-subrng 20493  df-subrg 20517  df-lmod 20806  df-lss 20876  df-lsp 20916  df-sra 21118  df-rgmod 21119  df-lidl 21156  df-rsp 21157  df-2idl 21198  df-psmet 21294  df-xmet 21295  df-met 21296  df-bl 21297  df-mopn 21298  df-fbas 21299  df-fg 21300  df-cnfld 21303  df-zring 21395  df-zrh 21451  df-zn 21454  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24809  df-limc 25806  df-dv 25807  df-log 26503  df-logb 26713
This theorem is referenced by:  aks6d1c7lem1  42122
  Copyright terms: Public domain W3C validator