Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c3 Structured version   Visualization version   GIF version

Theorem aks6d1c3 42118
Description: Claim 3 of Theorem 6.1 of the AKS inequality lemma. https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 28-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c3.1 (𝜑𝑁 ∈ ℕ)
aks6d1c3.2 (𝜑𝑃 ∈ ℙ)
aks6d1c3.3 (𝜑𝑃𝑁)
aks6d1c3.4 (𝜑𝑅 ∈ ℕ)
aks6d1c3.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c3.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c3.7 𝐿 = (ℤRHom‘𝑌)
aks6d1c3.8 𝑌 = (ℤ/nℤ‘𝑅)
aks6d1c3.9 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Assertion
Ref Expression
aks6d1c3 (𝜑 → ((2 logb 𝑁)↑2) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙   𝜑,𝑘,𝑙
Allowed substitution hints:   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)   𝑌(𝑘,𝑙)

Proof of Theorem aks6d1c3
Dummy variables 𝑖 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12267 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
3 2pos 12296 . . . . 5 0 < 2
43a1i 11 . . . 4 (𝜑 → 0 < 2)
5 aks6d1c3.1 . . . . 5 (𝜑𝑁 ∈ ℕ)
65nnred 12208 . . . 4 (𝜑𝑁 ∈ ℝ)
75nngt0d 12242 . . . 4 (𝜑 → 0 < 𝑁)
8 1red 11182 . . . . . 6 (𝜑 → 1 ∈ ℝ)
9 1lt2 12359 . . . . . . 7 1 < 2
109a1i 11 . . . . . 6 (𝜑 → 1 < 2)
118, 10ltned 11317 . . . . 5 (𝜑 → 1 ≠ 2)
1211necomd 2981 . . . 4 (𝜑 → 2 ≠ 1)
132, 4, 6, 7, 12relogbcld 41968 . . 3 (𝜑 → (2 logb 𝑁) ∈ ℝ)
1413resqcld 14097 . 2 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
15 aks6d1c3.4 . . . 4 (𝜑𝑅 ∈ ℕ)
165nnzd 12563 . . . 4 (𝜑𝑁 ∈ ℤ)
17 aks6d1c3.5 . . . 4 (𝜑 → (𝑁 gcd 𝑅) = 1)
18 odzcl 16771 . . . 4 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
1915, 16, 17, 18syl3anc 1373 . . 3 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
2019nnred 12208 . 2 (𝜑 → ((od𝑅)‘𝑁) ∈ ℝ)
21 aks6d1c3.2 . . . 4 (𝜑𝑃 ∈ ℙ)
22 aks6d1c3.3 . . . 4 (𝜑𝑃𝑁)
23 aks6d1c3.6 . . . 4 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
24 aks6d1c3.7 . . . 4 𝐿 = (ℤRHom‘𝑌)
25 aks6d1c3.8 . . . 4 𝑌 = (ℤ/nℤ‘𝑅)
265, 21, 22, 15, 17, 23, 24, 25hashscontpowcl 42115 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
2726nn0red 12511 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
28 aks6d1c3.9 . 2 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
29 nfv 1914 . . . 4 𝑥𝜑
30 prmnn 16651 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3121, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
3231nnzd 12563 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
3332adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑃 ∈ ℤ)
3433adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → 𝑃 ∈ ℤ)
35 simplr 768 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3634, 35zexpcld 14059 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
3731nnne0d 12243 . . . . . . . . . . . . . 14 (𝜑𝑃 ≠ 0)
38 dvdsval2 16232 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
3932, 37, 16, 38syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
4022, 39mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
4140adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ)
4241adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ)
43 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → 𝑙 ∈ ℕ0)
4442, 43zexpcld 14059 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → ((𝑁 / 𝑃)↑𝑙) ∈ ℤ)
4536, 44zmulcld 12651 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ)
4645ralrimiva 3126 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ∀𝑙 ∈ ℕ0 ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ)
4746ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ0𝑙 ∈ ℕ0 ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ)
4823fmpo 8050 . . . . . 6 (∀𝑘 ∈ ℕ0𝑙 ∈ ℕ0 ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ ↔ 𝐸:(ℕ0 × ℕ0)⟶ℤ)
4947, 48sylib 218 . . . . 5 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
5049ffund 6695 . . . 4 (𝜑 → Fun 𝐸)
5149ffvelcdmda 7059 . . . 4 ((𝜑𝑥 ∈ (ℕ0 × ℕ0)) → (𝐸𝑥) ∈ ℤ)
5229, 50, 51funimassd 6930 . . 3 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
5349ffnd 6692 . . . . . . 7 (𝜑𝐸 Fn (ℕ0 × ℕ0))
5453adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐸 Fn (ℕ0 × ℕ0))
55 simpr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
5655, 55opelxpd 5680 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0))
5754, 56, 56fnfvimad 7211 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝐸‘⟨𝑖, 𝑖⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)))
58 vex 3454 . . . . . . . . . . . . . 14 𝑘 ∈ V
59 vex 3454 . . . . . . . . . . . . . 14 𝑙 ∈ V
6058, 59op1std 7981 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑘, 𝑙⟩ → (1st𝑞) = 𝑘)
6160oveq2d 7406 . . . . . . . . . . . 12 (𝑞 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑞)) = (𝑃𝑘))
6258, 59op2ndd 7982 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑘, 𝑙⟩ → (2nd𝑞) = 𝑙)
6362oveq2d 7406 . . . . . . . . . . . 12 (𝑞 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑞)) = ((𝑁 / 𝑃)↑𝑙))
6461, 63oveq12d 7408 . . . . . . . . . . 11 (𝑞 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
6564mpompt 7506 . . . . . . . . . 10 (𝑞 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
6623, 65eqtr4i 2756 . . . . . . . . 9 𝐸 = (𝑞 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞))))
6766a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝐸 = (𝑞 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞)))))
68 simpr 484 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → 𝑞 = ⟨𝑖, 𝑖⟩)
6968fveq2d 6865 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → (1st𝑞) = (1st ‘⟨𝑖, 𝑖⟩))
7069oveq2d 7406 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → (𝑃↑(1st𝑞)) = (𝑃↑(1st ‘⟨𝑖, 𝑖⟩)))
7168fveq2d 6865 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → (2nd𝑞) = (2nd ‘⟨𝑖, 𝑖⟩))
7271oveq2d 7406 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → ((𝑁 / 𝑃)↑(2nd𝑞)) = ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩)))
7370, 72oveq12d 7408 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞))) = ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))))
74 opelxp 5677 . . . . . . . . . 10 (⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0) ↔ (𝑖 ∈ ℕ0𝑖 ∈ ℕ0))
7556, 74sylib 218 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑖 ∈ ℕ0𝑖 ∈ ℕ0))
7675, 74sylibr 234 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0))
7732adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑃 ∈ ℤ)
78 xp1st 8003 . . . . . . . . . . 11 (⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0) → (1st ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
7956, 78syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (1st ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
8077, 79zexpcld 14059 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) ∈ ℤ)
8140adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ)
82 xp2nd 8004 . . . . . . . . . . 11 (⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0) → (2nd ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
8356, 82syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (2nd ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
8481, 83zexpcld 14059 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩)) ∈ ℤ)
8580, 84zmulcld 12651 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))) ∈ ℤ)
8667, 73, 76, 85fvmptd 6978 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝐸‘⟨𝑖, 𝑖⟩) = ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))))
87 vex 3454 . . . . . . . . . . . 12 𝑖 ∈ V
8887, 87op1st 7979 . . . . . . . . . . 11 (1st ‘⟨𝑖, 𝑖⟩) = 𝑖
8988a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (1st ‘⟨𝑖, 𝑖⟩) = 𝑖)
9089oveq2d 7406 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) = (𝑃𝑖))
9187, 87op2nd 7980 . . . . . . . . . . 11 (2nd ‘⟨𝑖, 𝑖⟩) = 𝑖
9291a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (2nd ‘⟨𝑖, 𝑖⟩) = 𝑖)
9392oveq2d 7406 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩)) = ((𝑁 / 𝑃)↑𝑖))
9490, 93oveq12d 7408 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))) = ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑖)))
956recnd 11209 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
9695adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑁 ∈ ℂ)
9777zcnd 12646 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑃 ∈ ℂ)
9837adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑃 ≠ 0)
9996, 97, 98divcan2d 11967 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → (𝑃 · (𝑁 / 𝑃)) = 𝑁)
10099eqcomd 2736 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑁 = (𝑃 · (𝑁 / 𝑃)))
101100oveq1d 7405 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑁𝑖) = ((𝑃 · (𝑁 / 𝑃))↑𝑖))
10281zcnd 12646 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℂ)
10397, 102, 55mulexpd 14133 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ((𝑃 · (𝑁 / 𝑃))↑𝑖) = ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑖)))
104101, 103eqtr2d 2766 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑖)) = (𝑁𝑖))
10594, 104eqtrd 2765 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))) = (𝑁𝑖))
10686, 105eqtrd 2765 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝐸‘⟨𝑖, 𝑖⟩) = (𝑁𝑖))
107106eleq1d 2814 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → ((𝐸‘⟨𝑖, 𝑖⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)) ↔ (𝑁𝑖) ∈ (𝐸 “ (ℕ0 × ℕ0))))
10857, 107mpbid 232 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑁𝑖) ∈ (𝐸 “ (ℕ0 × ℕ0)))
109108ralrimiva 3126 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑁𝑖) ∈ (𝐸 “ (ℕ0 × ℕ0)))
11052, 5, 109, 15, 17, 24, 25hashscontpow 42117 . 2 (𝜑 → ((od𝑅)‘𝑁) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
11114, 20, 27, 28, 110ltletrd 11341 1 (𝜑 → ((2 logb 𝑁)↑2) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cexp 14033  chash 14302  cdvds 16229   gcd cgcd 16471  cprime 16648  odcodz 16740  ℤRHomczrh 21416  ℤ/nczn 21419   logb clogb 26681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-odz 16742  df-phi 16743  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-qus 17479  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-logb 26682
This theorem is referenced by:  aks6d1c7lem1  42175
  Copyright terms: Public domain W3C validator