Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c3 Structured version   Visualization version   GIF version

Theorem aks6d1c3 42096
Description: Claim 3 of Theorem 6.1 of the AKS inequality lemma. https://www3.nd.edu/%7eandyp/notes/AKS.pdf (Contributed by metakunt, 28-Apr-2025.)
Hypotheses
Ref Expression
aks6d1c3.1 (𝜑𝑁 ∈ ℕ)
aks6d1c3.2 (𝜑𝑃 ∈ ℙ)
aks6d1c3.3 (𝜑𝑃𝑁)
aks6d1c3.4 (𝜑𝑅 ∈ ℕ)
aks6d1c3.5 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c3.6 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c3.7 𝐿 = (ℤRHom‘𝑌)
aks6d1c3.8 𝑌 = (ℤ/nℤ‘𝑅)
aks6d1c3.9 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Assertion
Ref Expression
aks6d1c3 (𝜑 → ((2 logb 𝑁)↑2) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
Distinct variable groups:   𝑘,𝑁,𝑙   𝑃,𝑘,𝑙   𝜑,𝑘,𝑙
Allowed substitution hints:   𝑅(𝑘,𝑙)   𝐸(𝑘,𝑙)   𝐿(𝑘,𝑙)   𝑌(𝑘,𝑙)

Proof of Theorem aks6d1c3
Dummy variables 𝑖 𝑥 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12202 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
3 2pos 12231 . . . . 5 0 < 2
43a1i 11 . . . 4 (𝜑 → 0 < 2)
5 aks6d1c3.1 . . . . 5 (𝜑𝑁 ∈ ℕ)
65nnred 12143 . . . 4 (𝜑𝑁 ∈ ℝ)
75nngt0d 12177 . . . 4 (𝜑 → 0 < 𝑁)
8 1red 11116 . . . . . 6 (𝜑 → 1 ∈ ℝ)
9 1lt2 12294 . . . . . . 7 1 < 2
109a1i 11 . . . . . 6 (𝜑 → 1 < 2)
118, 10ltned 11252 . . . . 5 (𝜑 → 1 ≠ 2)
1211necomd 2980 . . . 4 (𝜑 → 2 ≠ 1)
132, 4, 6, 7, 12relogbcld 41946 . . 3 (𝜑 → (2 logb 𝑁) ∈ ℝ)
1413resqcld 14032 . 2 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
15 aks6d1c3.4 . . . 4 (𝜑𝑅 ∈ ℕ)
165nnzd 12498 . . . 4 (𝜑𝑁 ∈ ℤ)
17 aks6d1c3.5 . . . 4 (𝜑 → (𝑁 gcd 𝑅) = 1)
18 odzcl 16705 . . . 4 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
1915, 16, 17, 18syl3anc 1373 . . 3 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
2019nnred 12143 . 2 (𝜑 → ((od𝑅)‘𝑁) ∈ ℝ)
21 aks6d1c3.2 . . . 4 (𝜑𝑃 ∈ ℙ)
22 aks6d1c3.3 . . . 4 (𝜑𝑃𝑁)
23 aks6d1c3.6 . . . 4 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
24 aks6d1c3.7 . . . 4 𝐿 = (ℤRHom‘𝑌)
25 aks6d1c3.8 . . . 4 𝑌 = (ℤ/nℤ‘𝑅)
265, 21, 22, 15, 17, 23, 24, 25hashscontpowcl 42093 . . 3 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℕ0)
2726nn0red 12446 . 2 (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))) ∈ ℝ)
28 aks6d1c3.9 . 2 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
29 nfv 1914 . . . 4 𝑥𝜑
30 prmnn 16585 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3121, 30syl 17 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
3231nnzd 12498 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
3332adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → 𝑃 ∈ ℤ)
3433adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → 𝑃 ∈ ℤ)
35 simplr 768 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3634, 35zexpcld 13994 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → (𝑃𝑘) ∈ ℤ)
3731nnne0d 12178 . . . . . . . . . . . . . 14 (𝜑𝑃 ≠ 0)
38 dvdsval2 16166 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
3932, 37, 16, 38syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ))
4022, 39mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 𝑃) ∈ ℤ)
4140adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ)
4241adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ)
43 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → 𝑙 ∈ ℕ0)
4442, 43zexpcld 13994 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → ((𝑁 / 𝑃)↑𝑙) ∈ ℤ)
4536, 44zmulcld 12586 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0) → ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ)
4645ralrimiva 3121 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ∀𝑙 ∈ ℕ0 ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ)
4746ralrimiva 3121 . . . . . 6 (𝜑 → ∀𝑘 ∈ ℕ0𝑙 ∈ ℕ0 ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ)
4823fmpo 8003 . . . . . 6 (∀𝑘 ∈ ℕ0𝑙 ∈ ℕ0 ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ ↔ 𝐸:(ℕ0 × ℕ0)⟶ℤ)
4947, 48sylib 218 . . . . 5 (𝜑𝐸:(ℕ0 × ℕ0)⟶ℤ)
5049ffund 6656 . . . 4 (𝜑 → Fun 𝐸)
5149ffvelcdmda 7018 . . . 4 ((𝜑𝑥 ∈ (ℕ0 × ℕ0)) → (𝐸𝑥) ∈ ℤ)
5229, 50, 51funimassd 6889 . . 3 (𝜑 → (𝐸 “ (ℕ0 × ℕ0)) ⊆ ℤ)
5349ffnd 6653 . . . . . . 7 (𝜑𝐸 Fn (ℕ0 × ℕ0))
5453adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐸 Fn (ℕ0 × ℕ0))
55 simpr 484 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
5655, 55opelxpd 5658 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0))
5754, 56, 56fnfvimad 7170 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → (𝐸‘⟨𝑖, 𝑖⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)))
58 vex 3440 . . . . . . . . . . . . . 14 𝑘 ∈ V
59 vex 3440 . . . . . . . . . . . . . 14 𝑙 ∈ V
6058, 59op1std 7934 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑘, 𝑙⟩ → (1st𝑞) = 𝑘)
6160oveq2d 7365 . . . . . . . . . . . 12 (𝑞 = ⟨𝑘, 𝑙⟩ → (𝑃↑(1st𝑞)) = (𝑃𝑘))
6258, 59op2ndd 7935 . . . . . . . . . . . . 13 (𝑞 = ⟨𝑘, 𝑙⟩ → (2nd𝑞) = 𝑙)
6362oveq2d 7365 . . . . . . . . . . . 12 (𝑞 = ⟨𝑘, 𝑙⟩ → ((𝑁 / 𝑃)↑(2nd𝑞)) = ((𝑁 / 𝑃)↑𝑙))
6461, 63oveq12d 7367 . . . . . . . . . . 11 (𝑞 = ⟨𝑘, 𝑙⟩ → ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞))) = ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
6564mpompt 7463 . . . . . . . . . 10 (𝑞 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
6623, 65eqtr4i 2755 . . . . . . . . 9 𝐸 = (𝑞 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞))))
6766a1i 11 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝐸 = (𝑞 ∈ (ℕ0 × ℕ0) ↦ ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞)))))
68 simpr 484 . . . . . . . . . . 11 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → 𝑞 = ⟨𝑖, 𝑖⟩)
6968fveq2d 6826 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → (1st𝑞) = (1st ‘⟨𝑖, 𝑖⟩))
7069oveq2d 7365 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → (𝑃↑(1st𝑞)) = (𝑃↑(1st ‘⟨𝑖, 𝑖⟩)))
7168fveq2d 6826 . . . . . . . . . 10 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → (2nd𝑞) = (2nd ‘⟨𝑖, 𝑖⟩))
7271oveq2d 7365 . . . . . . . . 9 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → ((𝑁 / 𝑃)↑(2nd𝑞)) = ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩)))
7370, 72oveq12d 7367 . . . . . . . 8 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑞 = ⟨𝑖, 𝑖⟩) → ((𝑃↑(1st𝑞)) · ((𝑁 / 𝑃)↑(2nd𝑞))) = ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))))
74 opelxp 5655 . . . . . . . . . 10 (⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0) ↔ (𝑖 ∈ ℕ0𝑖 ∈ ℕ0))
7556, 74sylib 218 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑖 ∈ ℕ0𝑖 ∈ ℕ0))
7675, 74sylibr 234 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0))
7732adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑃 ∈ ℤ)
78 xp1st 7956 . . . . . . . . . . 11 (⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0) → (1st ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
7956, 78syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (1st ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
8077, 79zexpcld 13994 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) ∈ ℤ)
8140adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ)
82 xp2nd 7957 . . . . . . . . . . 11 (⟨𝑖, 𝑖⟩ ∈ (ℕ0 × ℕ0) → (2nd ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
8356, 82syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (2nd ‘⟨𝑖, 𝑖⟩) ∈ ℕ0)
8481, 83zexpcld 13994 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩)) ∈ ℤ)
8580, 84zmulcld 12586 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))) ∈ ℤ)
8667, 73, 76, 85fvmptd 6937 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → (𝐸‘⟨𝑖, 𝑖⟩) = ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))))
87 vex 3440 . . . . . . . . . . . 12 𝑖 ∈ V
8887, 87op1st 7932 . . . . . . . . . . 11 (1st ‘⟨𝑖, 𝑖⟩) = 𝑖
8988a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (1st ‘⟨𝑖, 𝑖⟩) = 𝑖)
9089oveq2d 7365 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) = (𝑃𝑖))
9187, 87op2nd 7933 . . . . . . . . . . 11 (2nd ‘⟨𝑖, 𝑖⟩) = 𝑖
9291a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (2nd ‘⟨𝑖, 𝑖⟩) = 𝑖)
9392oveq2d 7365 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩)) = ((𝑁 / 𝑃)↑𝑖))
9490, 93oveq12d 7367 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))) = ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑖)))
956recnd 11143 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
9695adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑁 ∈ ℂ)
9777zcnd 12581 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑃 ∈ ℂ)
9837adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ℕ0) → 𝑃 ≠ 0)
9996, 97, 98divcan2d 11902 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ℕ0) → (𝑃 · (𝑁 / 𝑃)) = 𝑁)
10099eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → 𝑁 = (𝑃 · (𝑁 / 𝑃)))
101100oveq1d 7364 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → (𝑁𝑖) = ((𝑃 · (𝑁 / 𝑃))↑𝑖))
10281zcnd 12581 . . . . . . . . . 10 ((𝜑𝑖 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℂ)
10397, 102, 55mulexpd 14068 . . . . . . . . 9 ((𝜑𝑖 ∈ ℕ0) → ((𝑃 · (𝑁 / 𝑃))↑𝑖) = ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑖)))
104101, 103eqtr2d 2765 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → ((𝑃𝑖) · ((𝑁 / 𝑃)↑𝑖)) = (𝑁𝑖))
10594, 104eqtrd 2764 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝑃↑(1st ‘⟨𝑖, 𝑖⟩)) · ((𝑁 / 𝑃)↑(2nd ‘⟨𝑖, 𝑖⟩))) = (𝑁𝑖))
10686, 105eqtrd 2764 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → (𝐸‘⟨𝑖, 𝑖⟩) = (𝑁𝑖))
107106eleq1d 2813 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → ((𝐸‘⟨𝑖, 𝑖⟩) ∈ (𝐸 “ (ℕ0 × ℕ0)) ↔ (𝑁𝑖) ∈ (𝐸 “ (ℕ0 × ℕ0))))
10857, 107mpbid 232 . . . 4 ((𝜑𝑖 ∈ ℕ0) → (𝑁𝑖) ∈ (𝐸 “ (ℕ0 × ℕ0)))
109108ralrimiva 3121 . . 3 (𝜑 → ∀𝑖 ∈ ℕ0 (𝑁𝑖) ∈ (𝐸 “ (ℕ0 × ℕ0)))
11052, 5, 109, 15, 17, 24, 25hashscontpow 42095 . 2 (𝜑 → ((od𝑅)‘𝑁) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
11114, 20, 27, 28, 110ltletrd 11276 1 (𝜑 → ((2 logb 𝑁)↑2) < (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149   / cdiv 11777  cn 12128  2c2 12183  0cn0 12384  cz 12471  cexp 13968  chash 14237  cdvds 16163   gcd cgcd 16405  cprime 16582  odcodz 16674  ℤRHomczrh 21406  ℤ/nczn 21409   logb clogb 26672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-odz 16676  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-qus 17413  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-sra 21077  df-rgmod 21078  df-lidl 21115  df-rsp 21116  df-2idl 21157  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-zring 21354  df-zrh 21410  df-zn 21413  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-logb 26673
This theorem is referenced by:  aks6d1c7lem1  42153
  Copyright terms: Public domain W3C validator