| Step | Hyp | Ref
| Expression |
| 1 | | 2re 12340 |
. . . . 5
⊢ 2 ∈
ℝ |
| 2 | 1 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ∈
ℝ) |
| 3 | | 2pos 12369 |
. . . . 5
⊢ 0 <
2 |
| 4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → 0 < 2) |
| 5 | | aks6d1c3.1 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | 5 | nnred 12281 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 7 | 5 | nngt0d 12315 |
. . . 4
⊢ (𝜑 → 0 < 𝑁) |
| 8 | | 1red 11262 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
| 9 | | 1lt2 12437 |
. . . . . . 7
⊢ 1 <
2 |
| 10 | 9 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 < 2) |
| 11 | 8, 10 | ltned 11397 |
. . . . 5
⊢ (𝜑 → 1 ≠ 2) |
| 12 | 11 | necomd 2996 |
. . . 4
⊢ (𝜑 → 2 ≠ 1) |
| 13 | 2, 4, 6, 7, 12 | relogbcld 41974 |
. . 3
⊢ (𝜑 → (2 logb 𝑁) ∈
ℝ) |
| 14 | 13 | resqcld 14165 |
. 2
⊢ (𝜑 → ((2 logb 𝑁)↑2) ∈
ℝ) |
| 15 | | aks6d1c3.4 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ ℕ) |
| 16 | 5 | nnzd 12640 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 17 | | aks6d1c3.5 |
. . . 4
⊢ (𝜑 → (𝑁 gcd 𝑅) = 1) |
| 18 | | odzcl 16831 |
. . . 4
⊢ ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) →
((odℤ‘𝑅)‘𝑁) ∈ ℕ) |
| 19 | 15, 16, 17, 18 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
((odℤ‘𝑅)‘𝑁) ∈ ℕ) |
| 20 | 19 | nnred 12281 |
. 2
⊢ (𝜑 →
((odℤ‘𝑅)‘𝑁) ∈ ℝ) |
| 21 | | aks6d1c3.2 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 22 | | aks6d1c3.3 |
. . . 4
⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| 23 | | aks6d1c3.6 |
. . . 4
⊢ 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 24 | | aks6d1c3.7 |
. . . 4
⊢ 𝐿 = (ℤRHom‘𝑌) |
| 25 | | aks6d1c3.8 |
. . . 4
⊢ 𝑌 =
(ℤ/nℤ‘𝑅) |
| 26 | 5, 21, 22, 15, 17, 23, 24, 25 | hashscontpowcl 42121 |
. . 3
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℕ0) |
| 27 | 26 | nn0red 12588 |
. 2
⊢ (𝜑 → (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0)))) ∈ ℝ) |
| 28 | | aks6d1c3.9 |
. 2
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
((odℤ‘𝑅)‘𝑁)) |
| 29 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑥𝜑 |
| 30 | | prmnn 16711 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 31 | 21, 30 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 32 | 31 | nnzd 12640 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈
ℤ) |
| 34 | 33 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0)
→ 𝑃 ∈
ℤ) |
| 35 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0)
→ 𝑘 ∈
ℕ0) |
| 36 | 34, 35 | zexpcld 14128 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0)
→ (𝑃↑𝑘) ∈
ℤ) |
| 37 | 31 | nnne0d 12316 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ≠ 0) |
| 38 | | dvdsval2 16293 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
| 39 | 32, 37, 16, 38 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 ∥ 𝑁 ↔ (𝑁 / 𝑃) ∈ ℤ)) |
| 40 | 22, 39 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑁 / 𝑃) ∈ ℤ) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ) |
| 42 | 41 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0)
→ (𝑁 / 𝑃) ∈
ℤ) |
| 43 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0)
→ 𝑙 ∈
ℕ0) |
| 44 | 42, 43 | zexpcld 14128 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0)
→ ((𝑁 / 𝑃)↑𝑙) ∈ ℤ) |
| 45 | 36, 44 | zmulcld 12728 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑙 ∈ ℕ0)
→ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ) |
| 46 | 45 | ralrimiva 3146 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
∀𝑙 ∈
ℕ0 ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ) |
| 47 | 46 | ralrimiva 3146 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 ∀𝑙 ∈ ℕ0
((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ) |
| 48 | 23 | fmpo 8093 |
. . . . . 6
⊢
(∀𝑘 ∈
ℕ0 ∀𝑙 ∈ ℕ0 ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙)) ∈ ℤ ↔ 𝐸:(ℕ0 ×
ℕ0)⟶ℤ) |
| 49 | 47, 48 | sylib 218 |
. . . . 5
⊢ (𝜑 → 𝐸:(ℕ0 ×
ℕ0)⟶ℤ) |
| 50 | 49 | ffund 6740 |
. . . 4
⊢ (𝜑 → Fun 𝐸) |
| 51 | 49 | ffvelcdmda 7104 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℕ0 ×
ℕ0)) → (𝐸‘𝑥) ∈ ℤ) |
| 52 | 29, 50, 51 | funimassd 6975 |
. . 3
⊢ (𝜑 → (𝐸 “ (ℕ0 ×
ℕ0)) ⊆ ℤ) |
| 53 | 49 | ffnd 6737 |
. . . . . . 7
⊢ (𝜑 → 𝐸 Fn (ℕ0 ×
ℕ0)) |
| 54 | 53 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐸 Fn (ℕ0 ×
ℕ0)) |
| 55 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
| 56 | 55, 55 | opelxpd 5724 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
〈𝑖, 𝑖〉 ∈ (ℕ0 ×
ℕ0)) |
| 57 | 54, 56, 56 | fnfvimad 7254 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐸‘〈𝑖, 𝑖〉) ∈ (𝐸 “ (ℕ0 ×
ℕ0))) |
| 58 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑘 ∈ V |
| 59 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑙 ∈ V |
| 60 | 58, 59 | op1std 8024 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 〈𝑘, 𝑙〉 → (1st ‘𝑞) = 𝑘) |
| 61 | 60 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑞 = 〈𝑘, 𝑙〉 → (𝑃↑(1st ‘𝑞)) = (𝑃↑𝑘)) |
| 62 | 58, 59 | op2ndd 8025 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 〈𝑘, 𝑙〉 → (2nd ‘𝑞) = 𝑙) |
| 63 | 62 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑞 = 〈𝑘, 𝑙〉 → ((𝑁 / 𝑃)↑(2nd ‘𝑞)) = ((𝑁 / 𝑃)↑𝑙)) |
| 64 | 61, 63 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑞 = 〈𝑘, 𝑙〉 → ((𝑃↑(1st ‘𝑞)) · ((𝑁 / 𝑃)↑(2nd ‘𝑞))) = ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 65 | 64 | mpompt 7547 |
. . . . . . . . . 10
⊢ (𝑞 ∈ (ℕ0
× ℕ0) ↦ ((𝑃↑(1st ‘𝑞)) · ((𝑁 / 𝑃)↑(2nd ‘𝑞)))) = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0
↦ ((𝑃↑𝑘) · ((𝑁 / 𝑃)↑𝑙))) |
| 66 | 23, 65 | eqtr4i 2768 |
. . . . . . . . 9
⊢ 𝐸 = (𝑞 ∈ (ℕ0 ×
ℕ0) ↦ ((𝑃↑(1st ‘𝑞)) · ((𝑁 / 𝑃)↑(2nd ‘𝑞)))) |
| 67 | 66 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐸 = (𝑞 ∈ (ℕ0 ×
ℕ0) ↦ ((𝑃↑(1st ‘𝑞)) · ((𝑁 / 𝑃)↑(2nd ‘𝑞))))) |
| 68 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑞 = 〈𝑖, 𝑖〉) → 𝑞 = 〈𝑖, 𝑖〉) |
| 69 | 68 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑞 = 〈𝑖, 𝑖〉) → (1st ‘𝑞) = (1st
‘〈𝑖, 𝑖〉)) |
| 70 | 69 | oveq2d 7447 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑞 = 〈𝑖, 𝑖〉) → (𝑃↑(1st ‘𝑞)) = (𝑃↑(1st ‘〈𝑖, 𝑖〉))) |
| 71 | 68 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑞 = 〈𝑖, 𝑖〉) → (2nd ‘𝑞) = (2nd
‘〈𝑖, 𝑖〉)) |
| 72 | 71 | oveq2d 7447 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑞 = 〈𝑖, 𝑖〉) → ((𝑁 / 𝑃)↑(2nd ‘𝑞)) = ((𝑁 / 𝑃)↑(2nd ‘〈𝑖, 𝑖〉))) |
| 73 | 70, 72 | oveq12d 7449 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ0) ∧ 𝑞 = 〈𝑖, 𝑖〉) → ((𝑃↑(1st ‘𝑞)) · ((𝑁 / 𝑃)↑(2nd ‘𝑞))) = ((𝑃↑(1st ‘〈𝑖, 𝑖〉)) · ((𝑁 / 𝑃)↑(2nd ‘〈𝑖, 𝑖〉)))) |
| 74 | | opelxp 5721 |
. . . . . . . . . 10
⊢
(〈𝑖, 𝑖〉 ∈
(ℕ0 × ℕ0) ↔ (𝑖 ∈ ℕ0 ∧ 𝑖 ∈
ℕ0)) |
| 75 | 56, 74 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑖 ∈ ℕ0
∧ 𝑖 ∈
ℕ0)) |
| 76 | 75, 74 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
〈𝑖, 𝑖〉 ∈ (ℕ0 ×
ℕ0)) |
| 77 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑃 ∈
ℤ) |
| 78 | | xp1st 8046 |
. . . . . . . . . . 11
⊢
(〈𝑖, 𝑖〉 ∈
(ℕ0 × ℕ0) → (1st
‘〈𝑖, 𝑖〉) ∈
ℕ0) |
| 79 | 56, 78 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(1st ‘〈𝑖, 𝑖〉) ∈
ℕ0) |
| 80 | 77, 79 | zexpcld 14128 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑃↑(1st
‘〈𝑖, 𝑖〉)) ∈
ℤ) |
| 81 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℤ) |
| 82 | | xp2nd 8047 |
. . . . . . . . . . 11
⊢
(〈𝑖, 𝑖〉 ∈
(ℕ0 × ℕ0) → (2nd
‘〈𝑖, 𝑖〉) ∈
ℕ0) |
| 83 | 56, 82 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(2nd ‘〈𝑖, 𝑖〉) ∈
ℕ0) |
| 84 | 81, 83 | zexpcld 14128 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑁 / 𝑃)↑(2nd ‘〈𝑖, 𝑖〉)) ∈ ℤ) |
| 85 | 80, 84 | zmulcld 12728 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑃↑(1st
‘〈𝑖, 𝑖〉)) · ((𝑁 / 𝑃)↑(2nd ‘〈𝑖, 𝑖〉))) ∈ ℤ) |
| 86 | 67, 73, 76, 85 | fvmptd 7023 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐸‘〈𝑖, 𝑖〉) = ((𝑃↑(1st ‘〈𝑖, 𝑖〉)) · ((𝑁 / 𝑃)↑(2nd ‘〈𝑖, 𝑖〉)))) |
| 87 | | vex 3484 |
. . . . . . . . . . . 12
⊢ 𝑖 ∈ V |
| 88 | 87, 87 | op1st 8022 |
. . . . . . . . . . 11
⊢
(1st ‘〈𝑖, 𝑖〉) = 𝑖 |
| 89 | 88 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(1st ‘〈𝑖, 𝑖〉) = 𝑖) |
| 90 | 89 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑃↑(1st
‘〈𝑖, 𝑖〉)) = (𝑃↑𝑖)) |
| 91 | 87, 87 | op2nd 8023 |
. . . . . . . . . . 11
⊢
(2nd ‘〈𝑖, 𝑖〉) = 𝑖 |
| 92 | 91 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) →
(2nd ‘〈𝑖, 𝑖〉) = 𝑖) |
| 93 | 92 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑁 / 𝑃)↑(2nd ‘〈𝑖, 𝑖〉)) = ((𝑁 / 𝑃)↑𝑖)) |
| 94 | 90, 93 | oveq12d 7449 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑃↑(1st
‘〈𝑖, 𝑖〉)) · ((𝑁 / 𝑃)↑(2nd ‘〈𝑖, 𝑖〉))) = ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑖))) |
| 95 | 6 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 96 | 95 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈
ℂ) |
| 97 | 77 | zcnd 12723 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑃 ∈
ℂ) |
| 98 | 37 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑃 ≠ 0) |
| 99 | 96, 97, 98 | divcan2d 12045 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑃 · (𝑁 / 𝑃)) = 𝑁) |
| 100 | 99 | eqcomd 2743 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑁 = (𝑃 · (𝑁 / 𝑃))) |
| 101 | 100 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑁↑𝑖) = ((𝑃 · (𝑁 / 𝑃))↑𝑖)) |
| 102 | 81 | zcnd 12723 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑁 / 𝑃) ∈ ℂ) |
| 103 | 97, 102, 55 | mulexpd 14201 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑃 · (𝑁 / 𝑃))↑𝑖) = ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑖))) |
| 104 | 101, 103 | eqtr2d 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑃↑𝑖) · ((𝑁 / 𝑃)↑𝑖)) = (𝑁↑𝑖)) |
| 105 | 94, 104 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝑃↑(1st
‘〈𝑖, 𝑖〉)) · ((𝑁 / 𝑃)↑(2nd ‘〈𝑖, 𝑖〉))) = (𝑁↑𝑖)) |
| 106 | 86, 105 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝐸‘〈𝑖, 𝑖〉) = (𝑁↑𝑖)) |
| 107 | 106 | eleq1d 2826 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐸‘〈𝑖, 𝑖〉) ∈ (𝐸 “ (ℕ0 ×
ℕ0)) ↔ (𝑁↑𝑖) ∈ (𝐸 “ (ℕ0 ×
ℕ0)))) |
| 108 | 57, 107 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → (𝑁↑𝑖) ∈ (𝐸 “ (ℕ0 ×
ℕ0))) |
| 109 | 108 | ralrimiva 3146 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ ℕ0 (𝑁↑𝑖) ∈ (𝐸 “ (ℕ0 ×
ℕ0))) |
| 110 | 52, 5, 109, 15, 17, 24, 25 | hashscontpow 42123 |
. 2
⊢ (𝜑 →
((odℤ‘𝑅)‘𝑁) ≤ (♯‘(𝐿 “ (𝐸 “ (ℕ0 ×
ℕ0))))) |
| 111 | 14, 20, 27, 28, 110 | ltletrd 11421 |
1
⊢ (𝜑 → ((2 logb 𝑁)↑2) <
(♯‘(𝐿 “
(𝐸 “
(ℕ0 × ℕ0))))) |