MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmonn2 Structured version   Visualization version   GIF version

Theorem prmonn2 16221
Description: Value of the primorial function expressed recursively. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmonn2 (𝑁 ∈ ℕ → (#p𝑁) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1))))

Proof of Theorem prmonn2
StepHypRef Expression
1 nncn 11440 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2 npcan1 10858 . . . . 5 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
31, 2syl 17 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
43eqcomd 2778 . . 3 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 − 1) + 1))
54fveq2d 6497 . 2 (𝑁 ∈ ℕ → (#p𝑁) = (#p‘((𝑁 − 1) + 1)))
6 nnm1nn0 11743 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
7 prmop1 16220 . . 3 ((𝑁 − 1) ∈ ℕ0 → (#p‘((𝑁 − 1) + 1)) = if(((𝑁 − 1) + 1) ∈ ℙ, ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)), (#p‘(𝑁 − 1))))
86, 7syl 17 . 2 (𝑁 ∈ ℕ → (#p‘((𝑁 − 1) + 1)) = if(((𝑁 − 1) + 1) ∈ ℙ, ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)), (#p‘(𝑁 − 1))))
93eleq1d 2844 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) ∈ ℙ ↔ 𝑁 ∈ ℙ))
103oveq2d 6986 . . 3 (𝑁 ∈ ℕ → ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)) = ((#p‘(𝑁 − 1)) · 𝑁))
119, 10ifbieq1d 4367 . 2 (𝑁 ∈ ℕ → if(((𝑁 − 1) + 1) ∈ ℙ, ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)), (#p‘(𝑁 − 1))) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1))))
125, 8, 113eqtrd 2812 1 (𝑁 ∈ ℕ → (#p𝑁) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2048  ifcif 4344  cfv 6182  (class class class)co 6970  cc 10325  1c1 10328   + caddc 10330   · cmul 10332  cmin 10662  cn 11431  0cn0 11700  cprime 15861  #pcprmo 16213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-oi 8761  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-rp 12198  df-fz 12702  df-fzo 12843  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-clim 14696  df-prod 15110  df-prmo 16214
This theorem is referenced by:  prmo2  16222  prmo3  16223  prmo4  16307  prmo5  16308  prmo6  16309  ex-prmo  28006
  Copyright terms: Public domain W3C validator