Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmonn2 | Structured version Visualization version GIF version |
Description: Value of the primorial function expressed recursively. (Contributed by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
prmonn2 | ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn 11981 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
2 | npcan1 11400 | . . . . 5 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
4 | 3 | eqcomd 2746 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 = ((𝑁 − 1) + 1)) |
5 | 4 | fveq2d 6775 | . 2 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) = (#p‘((𝑁 − 1) + 1))) |
6 | nnm1nn0 12274 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
7 | prmop1 16737 | . . 3 ⊢ ((𝑁 − 1) ∈ ℕ0 → (#p‘((𝑁 − 1) + 1)) = if(((𝑁 − 1) + 1) ∈ ℙ, ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)), (#p‘(𝑁 − 1)))) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → (#p‘((𝑁 − 1) + 1)) = if(((𝑁 − 1) + 1) ∈ ℙ, ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)), (#p‘(𝑁 − 1)))) |
9 | 3 | eleq1d 2825 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) + 1) ∈ ℙ ↔ 𝑁 ∈ ℙ)) |
10 | 3 | oveq2d 7287 | . . 3 ⊢ (𝑁 ∈ ℕ → ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)) = ((#p‘(𝑁 − 1)) · 𝑁)) |
11 | 9, 10 | ifbieq1d 4489 | . 2 ⊢ (𝑁 ∈ ℕ → if(((𝑁 − 1) + 1) ∈ ℙ, ((#p‘(𝑁 − 1)) · ((𝑁 − 1) + 1)), (#p‘(𝑁 − 1))) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1)))) |
12 | 5, 8, 11 | 3eqtrd 2784 | 1 ⊢ (𝑁 ∈ ℕ → (#p‘𝑁) = if(𝑁 ∈ ℙ, ((#p‘(𝑁 − 1)) · 𝑁), (#p‘(𝑁 − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ifcif 4465 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 1c1 10873 + caddc 10875 · cmul 10877 − cmin 11205 ℕcn 11973 ℕ0cn0 12233 ℙcprime 16374 #pcprmo 16730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-fz 13239 df-fzo 13382 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-clim 15195 df-prod 15614 df-prmo 16731 |
This theorem is referenced by: prmo2 16739 prmo3 16740 prmo4 16827 prmo5 16828 prmo6 16829 ex-prmo 28819 |
Copyright terms: Public domain | W3C validator |