| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpstopn | Structured version Visualization version GIF version | ||
| Description: The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on {∅, 1o} to (𝑋 × 𝑌) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpstps.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
| xpstopn.j | ⊢ 𝐽 = (TopOpen‘𝑅) |
| xpstopn.k | ⊢ 𝐾 = (TopOpen‘𝑆) |
| xpstopn.o | ⊢ 𝑂 = (TopOpen‘𝑇) |
| Ref | Expression |
|---|---|
| xpstopn | ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpstps.t | . 2 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
| 2 | xpstopn.j | . 2 ⊢ 𝐽 = (TopOpen‘𝑅) | |
| 3 | xpstopn.k | . 2 ⊢ 𝐾 = (TopOpen‘𝑆) | |
| 4 | xpstopn.o | . 2 ⊢ 𝑂 = (TopOpen‘𝑇) | |
| 5 | eqid 2733 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | eqid 2733 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 7 | eqid 2733 | . 2 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | xpstopnlem2 23727 | 1 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 {cpr 4577 〈cop 4581 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 1oc1o 8384 Basecbs 17122 TopOpenctopn 17327 ×s cxps 17412 TopSpctps 22848 ×t ctx 23476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-topgen 17349 df-pt 17350 df-prds 17353 df-qtop 17413 df-imas 17414 df-xps 17416 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cn 23143 df-cnp 23144 df-tx 23478 df-hmeo 23671 |
| This theorem is referenced by: tmsxpsmopn 24453 |
| Copyright terms: Public domain | W3C validator |