Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > quotcl | Structured version Visualization version GIF version |
Description: The quotient of two polynomials in a field 𝑆 is also in the field. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
plydiv.pl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
plydiv.tm | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
plydiv.rc | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) |
plydiv.m1 | ⊢ (𝜑 → -1 ∈ 𝑆) |
plydiv.f | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
plydiv.g | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
plydiv.z | ⊢ (𝜑 → 𝐺 ≠ 0𝑝) |
Ref | Expression |
---|---|
quotcl | ⊢ (𝜑 → (𝐹 quot 𝐺) ∈ (Poly‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plydiv.pl | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
2 | plydiv.tm | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | |
3 | plydiv.rc | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) | |
4 | plydiv.m1 | . . 3 ⊢ (𝜑 → -1 ∈ 𝑆) | |
5 | plydiv.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
6 | plydiv.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | |
7 | plydiv.z | . . 3 ⊢ (𝜑 → 𝐺 ≠ 0𝑝) | |
8 | eqid 2736 | . . 3 ⊢ (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = (𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | quotlem 25566 | . 2 ⊢ (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ ((𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺))) = 0𝑝 ∨ (deg‘(𝐹 ∘f − (𝐺 ∘f · (𝐹 quot 𝐺)))) < (deg‘𝐺)))) |
10 | 9 | simpld 495 | 1 ⊢ (𝜑 → (𝐹 quot 𝐺) ∈ (Poly‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 ∘f cof 7593 0cc0 10972 1c1 10973 + caddc 10975 · cmul 10977 < clt 11110 − cmin 11306 -cneg 11307 / cdiv 11733 0𝑝c0p 24939 Polycply 25451 degcdgr 25454 quot cquot 25556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-of 7595 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-inf 9300 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-rp 12832 df-fz 13341 df-fzo 13484 df-fl 13613 df-seq 13823 df-exp 13884 df-hash 14146 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-rlim 15297 df-sum 15497 df-0p 24940 df-ply 25455 df-coe 25457 df-dgr 25458 df-quot 25557 |
This theorem is referenced by: quotcl2 25568 |
Copyright terms: Public domain | W3C validator |