![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincciso4 | Structured version Visualization version GIF version |
Description: Two isomorphic categories are either both thin or neither. Note that "thincciso2.u" is redundant thanks to elbasfv 17249. (Contributed by Zhi Wang, 18-Oct-2025.) |
Ref | Expression |
---|---|
thincciso2.c | ⊢ 𝐶 = (CatCat‘𝑈) |
thincciso2.b | ⊢ 𝐵 = (Base‘𝐶) |
thincciso2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
thincciso2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincciso2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincciso4.i | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
Ref | Expression |
---|---|
thincciso4 | ⊢ (𝜑 → (𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincciso4.i | . . . . 5 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) | |
2 | eqid 2736 | . . . . . 6 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
3 | thincciso2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
4 | thincciso2.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
5 | thincciso2.c | . . . . . . . 8 ⊢ 𝐶 = (CatCat‘𝑈) | |
6 | 5 | catccat 18149 | . . . . . . 7 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
7 | 4, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | thincciso2.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | thincciso2.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 2, 3, 7, 8, 9 | cic 17839 | . . . . 5 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌))) |
11 | 1, 10 | mpbid 232 | . . . 4 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ ThinCat) → ∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) |
13 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑈 ∈ 𝑉) |
14 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑋 ∈ 𝐵) |
15 | 9 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑌 ∈ 𝐵) |
16 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) | |
17 | simplr 769 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑋 ∈ ThinCat) | |
18 | 5, 3, 13, 14, 15, 2, 16, 17 | thincciso3 49078 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑌 ∈ ThinCat) |
19 | 12, 18 | exlimddv 1935 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ ThinCat) → 𝑌 ∈ ThinCat) |
20 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ ThinCat) → ∃𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) |
21 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑌 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑈 ∈ 𝑉) |
22 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑌 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑋 ∈ 𝐵) |
23 | 9 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝑌 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑌 ∈ 𝐵) |
24 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑌 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) | |
25 | simplr 769 | . . . 4 ⊢ (((𝜑 ∧ 𝑌 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑌 ∈ ThinCat) | |
26 | 5, 3, 21, 22, 23, 2, 24, 25 | thincciso2 49077 | . . 3 ⊢ (((𝜑 ∧ 𝑌 ∈ ThinCat) ∧ 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) → 𝑋 ∈ ThinCat) |
27 | 20, 26 | exlimddv 1935 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ ThinCat) → 𝑋 ∈ ThinCat) |
28 | 19, 27 | impbida 801 | 1 ⊢ (𝜑 → (𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 class class class wbr 5141 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 Catccat 17703 Isociso 17786 ≃𝑐 ccic 17835 CatCatccatc 18139 ThinCatcthinc 49040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-om 7884 df-1st 8010 df-2nd 8011 df-supp 8182 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-er 8741 df-map 8864 df-ixp 8934 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17244 df-hom 17317 df-cco 17318 df-cat 17707 df-cid 17708 df-sect 17787 df-inv 17788 df-iso 17789 df-cic 17836 df-func 17899 df-idfu 17900 df-cofu 17901 df-full 17947 df-fth 17948 df-catc 18140 df-thinc 49041 |
This theorem is referenced by: termcterm2 49119 |
Copyright terms: Public domain | W3C validator |