Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  absabv Structured version   Visualization version   GIF version

Theorem absabv 20170
 Description: The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.)
Assertion
Ref Expression
absabv abs ∈ (AbsVal‘ℂfld)

Proof of Theorem absabv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2826 . . 3 (⊤ → (AbsVal‘ℂfld) = (AbsVal‘ℂfld))
2 cnfldbas 20117 . . . 4 ℂ = (Base‘ℂfld)
32a1i 11 . . 3 (⊤ → ℂ = (Base‘ℂfld))
4 cnfldadd 20118 . . . 4 + = (+g‘ℂfld)
54a1i 11 . . 3 (⊤ → + = (+g‘ℂfld))
6 cnfldmul 20119 . . . 4 · = (.r‘ℂfld)
76a1i 11 . . 3 (⊤ → · = (.r‘ℂfld))
8 cnfld0 20137 . . . 4 0 = (0g‘ℂfld)
98a1i 11 . . 3 (⊤ → 0 = (0g‘ℂfld))
10 cnring 20135 . . . 4 fld ∈ Ring
1110a1i 11 . . 3 (⊤ → ℂfld ∈ Ring)
12 absf 14461 . . . 4 abs:ℂ⟶ℝ
1312a1i 11 . . 3 (⊤ → abs:ℂ⟶ℝ)
14 abs0 14409 . . . 4 (abs‘0) = 0
1514a1i 11 . . 3 (⊤ → (abs‘0) = 0)
16 absgt0 14448 . . . . 5 (𝑥 ∈ ℂ → (𝑥 ≠ 0 ↔ 0 < (abs‘𝑥)))
1716biimpa 470 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥))
18173adant1 1164 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥))
19 absmul 14418 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
2019ad2ant2r 753 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
21203adant1 1164 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
22 abstri 14454 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦)))
2322ad2ant2r 753 . . . 4 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦)))
24233adant1 1164 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦)))
251, 3, 5, 7, 9, 11, 13, 15, 18, 21, 24isabvd 19183 . 2 (⊤ → abs ∈ (AbsVal‘ℂfld))
2625mptru 1664 1 abs ∈ (AbsVal‘ℂfld)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 386   = wceq 1656  ⊤wtru 1657   ∈ wcel 2164   ≠ wne 2999   class class class wbr 4875  ⟶wf 6123  ‘cfv 6127  (class class class)co 6910  ℂcc 10257  ℝcr 10258  0cc0 10259   + caddc 10262   · cmul 10264   < clt 10398   ≤ cle 10399  abscabs 14358  Basecbs 16229  +gcplusg 16312  .rcmulr 16313  0gc0g 16460  Ringcrg 18908  AbsValcabv 19179  ℂfldccnfld 20113 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-rp 12120  df-ico 12476  df-fz 12627  df-seq 13103  df-exp 13162  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-plusg 16325  df-mulr 16326  df-starv 16327  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-cmn 18555  df-mgp 18851  df-ring 18910  df-cring 18911  df-abv 19180  df-cnfld 20114 This theorem is referenced by:  cnnrg  22961  cnindmet  23338  qabsabv  25738
 Copyright terms: Public domain W3C validator