Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absabv | Structured version Visualization version GIF version |
Description: The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
absabv | ⊢ abs ∈ (AbsVal‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2734 | . . 3 ⊢ (⊤ → (AbsVal‘ℂfld) = (AbsVal‘ℂfld)) | |
2 | cnfldbas 20629 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
4 | cnfldadd 20630 | . . . 4 ⊢ + = (+g‘ℂfld) | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
6 | cnfldmul 20631 | . . . 4 ⊢ · = (.r‘ℂfld) | |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
8 | cnfld0 20650 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 0 = (0g‘ℂfld)) |
10 | cnring 20648 | . . . 4 ⊢ ℂfld ∈ Ring | |
11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
12 | absf 15077 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
13 | 12 | a1i 11 | . . 3 ⊢ (⊤ → abs:ℂ⟶ℝ) |
14 | abs0 15025 | . . . 4 ⊢ (abs‘0) = 0 | |
15 | 14 | a1i 11 | . . 3 ⊢ (⊤ → (abs‘0) = 0) |
16 | absgt0 15064 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 ≠ 0 ↔ 0 < (abs‘𝑥))) | |
17 | 16 | biimpa 476 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥)) |
18 | 17 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥)) |
19 | absmul 15034 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) | |
20 | 19 | ad2ant2r 743 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
21 | 20 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
22 | abstri 15070 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) | |
23 | 22 | ad2ant2r 743 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) |
24 | 23 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) |
25 | 1, 3, 5, 7, 9, 11, 13, 15, 18, 21, 24 | isabvd 20108 | . 2 ⊢ (⊤ → abs ∈ (AbsVal‘ℂfld)) |
26 | 25 | mptru 1544 | 1 ⊢ abs ∈ (AbsVal‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2101 ≠ wne 2938 class class class wbr 5077 ⟶wf 6443 ‘cfv 6447 (class class class)co 7295 ℂcc 10897 ℝcr 10898 0cc0 10899 + caddc 10902 · cmul 10904 < clt 11037 ≤ cle 11038 abscabs 14973 Basecbs 16940 +gcplusg 16990 .rcmulr 16991 0gc0g 17178 Ringcrg 19811 AbsValcabv 20104 ℂfldccnfld 20625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 ax-addf 10978 ax-mulf 10979 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-sup 9229 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-rp 12759 df-ico 13113 df-fz 13268 df-seq 13750 df-exp 13811 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-plusg 17003 df-mulr 17004 df-starv 17005 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-0g 17180 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-grp 18608 df-minusg 18609 df-cmn 19416 df-mgp 19749 df-ring 19813 df-cring 19814 df-abv 20105 df-cnfld 20626 |
This theorem is referenced by: cnnrg 23972 cnindmet 24354 qabsabv 26805 |
Copyright terms: Public domain | W3C validator |