Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absabv | Structured version Visualization version GIF version |
Description: The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
absabv | ⊢ abs ∈ (AbsVal‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2759 | . . 3 ⊢ (⊤ → (AbsVal‘ℂfld) = (AbsVal‘ℂfld)) | |
2 | cnfldbas 20170 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
4 | cnfldadd 20171 | . . . 4 ⊢ + = (+g‘ℂfld) | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
6 | cnfldmul 20172 | . . . 4 ⊢ · = (.r‘ℂfld) | |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
8 | cnfld0 20190 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 0 = (0g‘ℂfld)) |
10 | cnring 20188 | . . . 4 ⊢ ℂfld ∈ Ring | |
11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
12 | absf 14745 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
13 | 12 | a1i 11 | . . 3 ⊢ (⊤ → abs:ℂ⟶ℝ) |
14 | abs0 14693 | . . . 4 ⊢ (abs‘0) = 0 | |
15 | 14 | a1i 11 | . . 3 ⊢ (⊤ → (abs‘0) = 0) |
16 | absgt0 14732 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 ≠ 0 ↔ 0 < (abs‘𝑥))) | |
17 | 16 | biimpa 480 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥)) |
18 | 17 | 3adant1 1127 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥)) |
19 | absmul 14702 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) | |
20 | 19 | ad2ant2r 746 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
21 | 20 | 3adant1 1127 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
22 | abstri 14738 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) | |
23 | 22 | ad2ant2r 746 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) |
24 | 23 | 3adant1 1127 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) |
25 | 1, 3, 5, 7, 9, 11, 13, 15, 18, 21, 24 | isabvd 19659 | . 2 ⊢ (⊤ → abs ∈ (AbsVal‘ℂfld)) |
26 | 25 | mptru 1545 | 1 ⊢ abs ∈ (AbsVal‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 ≠ wne 2951 class class class wbr 5032 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 ℝcr 10574 0cc0 10575 + caddc 10578 · cmul 10580 < clt 10713 ≤ cle 10714 abscabs 14641 Basecbs 16541 +gcplusg 16623 .rcmulr 16624 0gc0g 16771 Ringcrg 19365 AbsValcabv 19655 ℂfldccnfld 20166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-rp 12431 df-ico 12785 df-fz 12940 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-plusg 16636 df-mulr 16637 df-starv 16638 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-cmn 18975 df-mgp 19308 df-ring 19367 df-cring 19368 df-abv 19656 df-cnfld 20167 |
This theorem is referenced by: cnnrg 23482 cnindmet 23863 qabsabv 26312 |
Copyright terms: Public domain | W3C validator |