Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absabv | Structured version Visualization version GIF version |
Description: The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
absabv | ⊢ abs ∈ (AbsVal‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . . 3 ⊢ (⊤ → (AbsVal‘ℂfld) = (AbsVal‘ℂfld)) | |
2 | cnfldbas 20514 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
4 | cnfldadd 20515 | . . . 4 ⊢ + = (+g‘ℂfld) | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
6 | cnfldmul 20516 | . . . 4 ⊢ · = (.r‘ℂfld) | |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
8 | cnfld0 20534 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 0 = (0g‘ℂfld)) |
10 | cnring 20532 | . . . 4 ⊢ ℂfld ∈ Ring | |
11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
12 | absf 14977 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
13 | 12 | a1i 11 | . . 3 ⊢ (⊤ → abs:ℂ⟶ℝ) |
14 | abs0 14925 | . . . 4 ⊢ (abs‘0) = 0 | |
15 | 14 | a1i 11 | . . 3 ⊢ (⊤ → (abs‘0) = 0) |
16 | absgt0 14964 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 ≠ 0 ↔ 0 < (abs‘𝑥))) | |
17 | 16 | biimpa 476 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥)) |
18 | 17 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥)) |
19 | absmul 14934 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) | |
20 | 19 | ad2ant2r 743 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
21 | 20 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
22 | abstri 14970 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) | |
23 | 22 | ad2ant2r 743 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) |
24 | 23 | 3adant1 1128 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) |
25 | 1, 3, 5, 7, 9, 11, 13, 15, 18, 21, 24 | isabvd 19995 | . 2 ⊢ (⊤ → abs ∈ (AbsVal‘ℂfld)) |
26 | 25 | mptru 1546 | 1 ⊢ abs ∈ (AbsVal‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 abscabs 14873 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 Ringcrg 19698 AbsValcabv 19991 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-cmn 19303 df-mgp 19636 df-ring 19700 df-cring 19701 df-abv 19992 df-cnfld 20511 |
This theorem is referenced by: cnnrg 23850 cnindmet 24231 qabsabv 26682 |
Copyright terms: Public domain | W3C validator |