| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absabv | Structured version Visualization version GIF version | ||
| Description: The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| absabv | ⊢ abs ∈ (AbsVal‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2736 | . . 3 ⊢ (⊤ → (AbsVal‘ℂfld) = (AbsVal‘ℂfld)) | |
| 2 | cnfldbas 21317 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 4 | cnfldadd 21319 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
| 6 | cnfldmul 21321 | . . . 4 ⊢ · = (.r‘ℂfld) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
| 8 | cnfld0 21353 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (⊤ → 0 = (0g‘ℂfld)) |
| 10 | cnring 21351 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → ℂfld ∈ Ring) |
| 12 | absf 15354 | . . . 4 ⊢ abs:ℂ⟶ℝ | |
| 13 | 12 | a1i 11 | . . 3 ⊢ (⊤ → abs:ℂ⟶ℝ) |
| 14 | abs0 15302 | . . . 4 ⊢ (abs‘0) = 0 | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (⊤ → (abs‘0) = 0) |
| 16 | absgt0 15341 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (𝑥 ≠ 0 ↔ 0 < (abs‘𝑥))) | |
| 17 | 16 | biimpa 476 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥)) |
| 18 | 17 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → 0 < (abs‘𝑥)) |
| 19 | absmul 15311 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) | |
| 20 | 19 | ad2ant2r 747 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
| 21 | 20 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦))) |
| 22 | abstri 15347 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) | |
| 23 | 22 | ad2ant2r 747 | . . . 4 ⊢ (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) |
| 24 | 23 | 3adant1 1130 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0)) → (abs‘(𝑥 + 𝑦)) ≤ ((abs‘𝑥) + (abs‘𝑦))) |
| 25 | 1, 3, 5, 7, 9, 11, 13, 15, 18, 21, 24 | isabvd 20770 | . 2 ⊢ (⊤ → abs ∈ (AbsVal‘ℂfld)) |
| 26 | 25 | mptru 1547 | 1 ⊢ abs ∈ (AbsVal‘ℂfld) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 0cc0 11127 + caddc 11130 · cmul 11132 < clt 11267 ≤ cle 11268 abscabs 15251 Basecbs 17226 +gcplusg 17269 .rcmulr 17270 0gc0g 17451 Ringcrg 20191 AbsValcabv 20766 ℂfldccnfld 21313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-ico 13366 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-abv 20767 df-cnfld 21314 |
| This theorem is referenced by: cnnrg 24717 cnindmet 25112 qabsabv 27590 |
| Copyright terms: Public domain | W3C validator |