![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem6 | Structured version Visualization version GIF version |
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024.) |
Ref | Expression |
---|---|
lcmineqlem6.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
lcmineqlem6.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lcmineqlem6.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
lcmineqlem6.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
lcmineqlem6 | ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem6.1 | . . . . . 6 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
2 | lcmineqlem6.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lcmineqlem6.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | lcmineqlem6.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
5 | 1, 2, 3, 4 | lcmineqlem3 42012 | . . . . 5 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
6 | 5 | oveq2d 7446 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
7 | fzfid 14010 | . . . . 5 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
8 | fz1ssnn 13591 | . . . . . . . . 9 ⊢ (1...𝑁) ⊆ ℕ | |
9 | fzfi 14009 | . . . . . . . . 9 ⊢ (1...𝑁) ∈ Fin | |
10 | 8, 9 | pm3.2i 470 | . . . . . . . 8 ⊢ ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) |
11 | lcmfnncl 16662 | . . . . . . . 8 ⊢ (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ (lcm‘(1...𝑁)) ∈ ℕ |
13 | 12 | nncni 12273 | . . . . . 6 ⊢ (lcm‘(1...𝑁)) ∈ ℂ |
14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lcm‘(1...𝑁)) ∈ ℂ) |
15 | elfzelz 13560 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) | |
16 | m1expcl 14123 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ) | |
17 | 15, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℤ) |
18 | 17 | zcnd 12720 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
19 | 18 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
20 | bccl2 14358 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ) | |
21 | 20 | nncnd 12279 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
22 | 21 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
23 | 19, 22 | mulcld 11278 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
24 | 3 | nncnd 12279 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
25 | 24 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℂ) |
26 | 15 | zcnd 12720 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℂ) |
27 | 26 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ ℂ) |
28 | 25, 27 | addcld 11277 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℂ) |
29 | elfznn0 13656 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
30 | nnnn0addcl 12553 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ) | |
31 | 29, 30 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
32 | 3, 31 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
33 | 32 | nnne0d 12313 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ≠ 0) |
34 | 28, 33 | reccld 12033 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (1 / (𝑀 + 𝑘)) ∈ ℂ) |
35 | 23, 34 | mulcld 11278 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))) ∈ ℂ) |
36 | 7, 14, 35 | fsummulc2 15816 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
37 | 6, 36 | eqtrd 2774 | . . 3 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
38 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (lcm‘(1...𝑁)) ∈ ℂ) |
39 | 38, 23, 28, 33 | lcmineqlem5 42014 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
40 | 39 | sumeq2dv 15734 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
41 | 37, 40 | eqtrd 2774 | . 2 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
42 | 17 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℤ) |
43 | 20 | nnzd 12637 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
44 | 43 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
45 | 42, 44 | zmulcld 12725 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℤ) |
46 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑁 ∈ ℕ) |
47 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℕ) |
48 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ≤ 𝑁) |
49 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ (0...(𝑁 − 𝑀))) | |
50 | 46, 47, 48, 49 | lcmineqlem4 42013 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)) ∈ ℤ) |
51 | 45, 50 | zmulcld 12725 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
52 | 7, 51 | fsumzcl 15767 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
53 | 41, 52 | eqeltrd 2838 | 1 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 Fincfn 8983 ℂcc 11150 0cc0 11152 1c1 11153 + caddc 11155 · cmul 11157 ≤ cle 11293 − cmin 11489 -cneg 11490 / cdiv 11917 ℕcn 12263 ℕ0cn0 12523 ℤcz 12610 [,]cicc 13386 ...cfz 13543 ↑cexp 14098 Ccbc 14337 Σcsu 15718 lcmclcmf 16622 ∫citg 25666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cc 10472 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-symdif 4258 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-disj 5115 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-ofr 7697 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-omul 8509 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-dju 9938 df-card 9976 df-acn 9979 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-ioc 13388 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-fac 14309 df-bc 14338 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-limsup 15503 df-clim 15520 df-rlim 15521 df-sum 15719 df-prod 15936 df-dvds 16287 df-lcmf 16624 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cld 23042 df-ntr 23043 df-cls 23044 df-nei 23121 df-lp 23159 df-perf 23160 df-cn 23250 df-cnp 23251 df-haus 23338 df-cmp 23410 df-tx 23585 df-hmeo 23778 df-fil 23869 df-fm 23961 df-flim 23962 df-flf 23963 df-xms 24345 df-ms 24346 df-tms 24347 df-cncf 24917 df-ovol 25512 df-vol 25513 df-mbf 25667 df-itg1 25668 df-itg2 25669 df-ibl 25670 df-itg 25671 df-0p 25718 df-limc 25915 df-dv 25916 |
This theorem is referenced by: lcmineqlem15 42024 |
Copyright terms: Public domain | W3C validator |