| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem6 | Structured version Visualization version GIF version | ||
| Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024.) |
| Ref | Expression |
|---|---|
| lcmineqlem6.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
| lcmineqlem6.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| lcmineqlem6.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| lcmineqlem6.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| lcmineqlem6 | ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmineqlem6.1 | . . . . . 6 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
| 2 | lcmineqlem6.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | lcmineqlem6.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 4 | lcmineqlem6.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 5 | 1, 2, 3, 4 | lcmineqlem3 42049 | . . . . 5 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
| 6 | 5 | oveq2d 7426 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
| 7 | fzfid 13996 | . . . . 5 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
| 8 | fz1ssnn 13577 | . . . . . . . . 9 ⊢ (1...𝑁) ⊆ ℕ | |
| 9 | fzfi 13995 | . . . . . . . . 9 ⊢ (1...𝑁) ∈ Fin | |
| 10 | 8, 9 | pm3.2i 470 | . . . . . . . 8 ⊢ ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) |
| 11 | lcmfnncl 16653 | . . . . . . . 8 ⊢ (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ (lcm‘(1...𝑁)) ∈ ℕ |
| 13 | 12 | nncni 12255 | . . . . . 6 ⊢ (lcm‘(1...𝑁)) ∈ ℂ |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lcm‘(1...𝑁)) ∈ ℂ) |
| 15 | elfzelz 13546 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) | |
| 16 | m1expcl 14109 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ) | |
| 17 | 15, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℤ) |
| 18 | 17 | zcnd 12703 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
| 19 | 18 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
| 20 | bccl2 14346 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ) | |
| 21 | 20 | nncnd 12261 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
| 22 | 21 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
| 23 | 19, 22 | mulcld 11260 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
| 24 | 3 | nncnd 12261 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 25 | 24 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℂ) |
| 26 | 15 | zcnd 12703 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℂ) |
| 27 | 26 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ ℂ) |
| 28 | 25, 27 | addcld 11259 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℂ) |
| 29 | elfznn0 13642 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
| 30 | nnnn0addcl 12536 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ) | |
| 31 | 29, 30 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
| 32 | 3, 31 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
| 33 | 32 | nnne0d 12295 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ≠ 0) |
| 34 | 28, 33 | reccld 12015 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (1 / (𝑀 + 𝑘)) ∈ ℂ) |
| 35 | 23, 34 | mulcld 11260 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))) ∈ ℂ) |
| 36 | 7, 14, 35 | fsummulc2 15805 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
| 37 | 6, 36 | eqtrd 2771 | . . 3 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
| 38 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (lcm‘(1...𝑁)) ∈ ℂ) |
| 39 | 38, 23, 28, 33 | lcmineqlem5 42051 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
| 40 | 39 | sumeq2dv 15723 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
| 41 | 37, 40 | eqtrd 2771 | . 2 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
| 42 | 17 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℤ) |
| 43 | 20 | nnzd 12620 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
| 44 | 43 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
| 45 | 42, 44 | zmulcld 12708 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℤ) |
| 46 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑁 ∈ ℕ) |
| 47 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℕ) |
| 48 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ≤ 𝑁) |
| 49 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ (0...(𝑁 − 𝑀))) | |
| 50 | 46, 47, 48, 49 | lcmineqlem4 42050 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)) ∈ ℤ) |
| 51 | 45, 50 | zmulcld 12708 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
| 52 | 7, 51 | fsumzcl 15756 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
| 53 | 41, 52 | eqeltrd 2835 | 1 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 ℂcc 11132 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 ≤ cle 11275 − cmin 11471 -cneg 11472 / cdiv 11899 ℕcn 12245 ℕ0cn0 12506 ℤcz 12593 [,]cicc 13370 ...cfz 13529 ↑cexp 14084 Ccbc 14325 Σcsu 15707 lcmclcmf 16613 ∫citg 25576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cc 10454 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-symdif 4233 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-disj 5092 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-ofr 7677 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-acn 9961 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-prod 15925 df-dvds 16278 df-lcmf 16615 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-cmp 23330 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-ovol 25422 df-vol 25423 df-mbf 25577 df-itg1 25578 df-itg2 25579 df-ibl 25580 df-itg 25581 df-0p 25628 df-limc 25824 df-dv 25825 |
| This theorem is referenced by: lcmineqlem15 42061 |
| Copyright terms: Public domain | W3C validator |