Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem6 | Structured version Visualization version GIF version |
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024.) |
Ref | Expression |
---|---|
lcmineqlem6.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
lcmineqlem6.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lcmineqlem6.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
lcmineqlem6.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
lcmineqlem6 | ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem6.1 | . . . . . 6 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
2 | lcmineqlem6.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lcmineqlem6.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | lcmineqlem6.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
5 | 1, 2, 3, 4 | lcmineqlem3 40028 | . . . . 5 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
6 | 5 | oveq2d 7285 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
7 | fzfid 13683 | . . . . 5 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
8 | fz1ssnn 13278 | . . . . . . . . 9 ⊢ (1...𝑁) ⊆ ℕ | |
9 | fzfi 13682 | . . . . . . . . 9 ⊢ (1...𝑁) ∈ Fin | |
10 | 8, 9 | pm3.2i 471 | . . . . . . . 8 ⊢ ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) |
11 | lcmfnncl 16324 | . . . . . . . 8 ⊢ (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ (lcm‘(1...𝑁)) ∈ ℕ |
13 | 12 | nncni 11975 | . . . . . 6 ⊢ (lcm‘(1...𝑁)) ∈ ℂ |
14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lcm‘(1...𝑁)) ∈ ℂ) |
15 | elfzelz 13247 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) | |
16 | m1expcl 13795 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ) | |
17 | 15, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℤ) |
18 | 17 | zcnd 12418 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
19 | 18 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
20 | bccl2 14027 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ) | |
21 | 20 | nncnd 11981 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
22 | 21 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
23 | 19, 22 | mulcld 10988 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
24 | 3 | nncnd 11981 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
25 | 24 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℂ) |
26 | 15 | zcnd 12418 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℂ) |
27 | 26 | adantl 482 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ ℂ) |
28 | 25, 27 | addcld 10987 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℂ) |
29 | elfznn0 13340 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
30 | nnnn0addcl 12255 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ) | |
31 | 29, 30 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
32 | 3, 31 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
33 | 32 | nnne0d 12015 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ≠ 0) |
34 | 28, 33 | reccld 11736 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (1 / (𝑀 + 𝑘)) ∈ ℂ) |
35 | 23, 34 | mulcld 10988 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))) ∈ ℂ) |
36 | 7, 14, 35 | fsummulc2 15486 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
37 | 6, 36 | eqtrd 2780 | . . 3 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
38 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (lcm‘(1...𝑁)) ∈ ℂ) |
39 | 38, 23, 28, 33 | lcmineqlem5 40030 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
40 | 39 | sumeq2dv 15405 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
41 | 37, 40 | eqtrd 2780 | . 2 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
42 | 17 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℤ) |
43 | 20 | nnzd 12416 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
44 | 43 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
45 | 42, 44 | zmulcld 12423 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℤ) |
46 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑁 ∈ ℕ) |
47 | 3 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℕ) |
48 | 4 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ≤ 𝑁) |
49 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ (0...(𝑁 − 𝑀))) | |
50 | 46, 47, 48, 49 | lcmineqlem4 40029 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)) ∈ ℤ) |
51 | 45, 50 | zmulcld 12423 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
52 | 7, 51 | fsumzcl 15437 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
53 | 41, 52 | eqeltrd 2841 | 1 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 class class class wbr 5079 ‘cfv 6431 (class class class)co 7269 Fincfn 8708 ℂcc 10862 0cc0 10864 1c1 10865 + caddc 10867 · cmul 10869 ≤ cle 11003 − cmin 11197 -cneg 11198 / cdiv 11624 ℕcn 11965 ℕ0cn0 12225 ℤcz 12311 [,]cicc 13073 ...cfz 13230 ↑cexp 13772 Ccbc 14006 Σcsu 15387 lcmclcmf 16284 ∫citg 24772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9369 ax-cc 10184 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 ax-pre-sup 10942 ax-addf 10943 ax-mulf 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-symdif 4182 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-disj 5045 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-of 7525 df-ofr 7526 df-om 7702 df-1st 7818 df-2nd 7819 df-supp 7963 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-1o 8282 df-2o 8283 df-oadd 8286 df-omul 8287 df-er 8473 df-map 8592 df-pm 8593 df-ixp 8661 df-en 8709 df-dom 8710 df-sdom 8711 df-fin 8712 df-fsupp 9099 df-fi 9140 df-sup 9171 df-inf 9172 df-oi 9239 df-dju 9652 df-card 9690 df-acn 9693 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-div 11625 df-nn 11966 df-2 12028 df-3 12029 df-4 12030 df-5 12031 df-6 12032 df-7 12033 df-8 12034 df-9 12035 df-n0 12226 df-z 12312 df-dec 12429 df-uz 12574 df-q 12680 df-rp 12722 df-xneg 12839 df-xadd 12840 df-xmul 12841 df-ioo 13074 df-ioc 13075 df-ico 13076 df-icc 13077 df-fz 13231 df-fzo 13374 df-fl 13502 df-mod 13580 df-seq 13712 df-exp 13773 df-fac 13978 df-bc 14007 df-hash 14035 df-cj 14800 df-re 14801 df-im 14802 df-sqrt 14936 df-abs 14937 df-limsup 15170 df-clim 15187 df-rlim 15188 df-sum 15388 df-prod 15606 df-dvds 15954 df-lcmf 16286 df-struct 16838 df-sets 16855 df-slot 16873 df-ndx 16885 df-base 16903 df-ress 16932 df-plusg 16965 df-mulr 16966 df-starv 16967 df-sca 16968 df-vsca 16969 df-ip 16970 df-tset 16971 df-ple 16972 df-ds 16974 df-unif 16975 df-hom 16976 df-cco 16977 df-rest 17123 df-topn 17124 df-0g 17142 df-gsum 17143 df-topgen 17144 df-pt 17145 df-prds 17148 df-xrs 17203 df-qtop 17208 df-imas 17209 df-xps 17211 df-mre 17285 df-mrc 17286 df-acs 17288 df-mgm 18316 df-sgrp 18365 df-mnd 18376 df-submnd 18421 df-mulg 18691 df-cntz 18913 df-cmn 19378 df-psmet 20579 df-xmet 20580 df-met 20581 df-bl 20582 df-mopn 20583 df-fbas 20584 df-fg 20585 df-cnfld 20588 df-top 22033 df-topon 22050 df-topsp 22072 df-bases 22086 df-cld 22160 df-ntr 22161 df-cls 22162 df-nei 22239 df-lp 22277 df-perf 22278 df-cn 22368 df-cnp 22369 df-haus 22456 df-cmp 22528 df-tx 22703 df-hmeo 22896 df-fil 22987 df-fm 23079 df-flim 23080 df-flf 23081 df-xms 23463 df-ms 23464 df-tms 23465 df-cncf 24031 df-ovol 24618 df-vol 24619 df-mbf 24773 df-itg1 24774 df-itg2 24775 df-ibl 24776 df-itg 24777 df-0p 24824 df-limc 25020 df-dv 25021 |
This theorem is referenced by: lcmineqlem15 40040 |
Copyright terms: Public domain | W3C validator |