![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem6 | Structured version Visualization version GIF version |
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024.) |
Ref | Expression |
---|---|
lcmineqlem6.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
lcmineqlem6.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lcmineqlem6.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
lcmineqlem6.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
Ref | Expression |
---|---|
lcmineqlem6 | ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem6.1 | . . . . . 6 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
2 | lcmineqlem6.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | lcmineqlem6.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | lcmineqlem6.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
5 | 1, 2, 3, 4 | lcmineqlem3 41743 | . . . . 5 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
6 | 5 | oveq2d 7432 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
7 | fzfid 13987 | . . . . 5 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
8 | fz1ssnn 13580 | . . . . . . . . 9 ⊢ (1...𝑁) ⊆ ℕ | |
9 | fzfi 13986 | . . . . . . . . 9 ⊢ (1...𝑁) ∈ Fin | |
10 | 8, 9 | pm3.2i 469 | . . . . . . . 8 ⊢ ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) |
11 | lcmfnncl 16625 | . . . . . . . 8 ⊢ (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ (lcm‘(1...𝑁)) ∈ ℕ |
13 | 12 | nncni 12268 | . . . . . 6 ⊢ (lcm‘(1...𝑁)) ∈ ℂ |
14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lcm‘(1...𝑁)) ∈ ℂ) |
15 | elfzelz 13549 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) | |
16 | m1expcl 14100 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ) | |
17 | 15, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℤ) |
18 | 17 | zcnd 12713 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
19 | 18 | adantl 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
20 | bccl2 14335 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ) | |
21 | 20 | nncnd 12274 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
22 | 21 | adantl 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
23 | 19, 22 | mulcld 11275 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
24 | 3 | nncnd 12274 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
25 | 24 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℂ) |
26 | 15 | zcnd 12713 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℂ) |
27 | 26 | adantl 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ ℂ) |
28 | 25, 27 | addcld 11274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℂ) |
29 | elfznn0 13642 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
30 | nnnn0addcl 12548 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ) | |
31 | 29, 30 | sylan2 591 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
32 | 3, 31 | sylan 578 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
33 | 32 | nnne0d 12308 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ≠ 0) |
34 | 28, 33 | reccld 12028 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (1 / (𝑀 + 𝑘)) ∈ ℂ) |
35 | 23, 34 | mulcld 11275 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))) ∈ ℂ) |
36 | 7, 14, 35 | fsummulc2 15783 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
37 | 6, 36 | eqtrd 2766 | . . 3 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
38 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (lcm‘(1...𝑁)) ∈ ℂ) |
39 | 38, 23, 28, 33 | lcmineqlem5 41745 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
40 | 39 | sumeq2dv 15702 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
41 | 37, 40 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
42 | 17 | adantl 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℤ) |
43 | 20 | nnzd 12631 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
44 | 43 | adantl 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
45 | 42, 44 | zmulcld 12718 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℤ) |
46 | 2 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑁 ∈ ℕ) |
47 | 3 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℕ) |
48 | 4 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ≤ 𝑁) |
49 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ (0...(𝑁 − 𝑀))) | |
50 | 46, 47, 48, 49 | lcmineqlem4 41744 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)) ∈ ℤ) |
51 | 45, 50 | zmulcld 12718 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
52 | 7, 51 | fsumzcl 15734 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
53 | 41, 52 | eqeltrd 2826 | 1 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 Fincfn 8966 ℂcc 11147 0cc0 11149 1c1 11150 + caddc 11152 · cmul 11154 ≤ cle 11290 − cmin 11485 -cneg 11486 / cdiv 11912 ℕcn 12258 ℕ0cn0 12518 ℤcz 12604 [,]cicc 13375 ...cfz 13532 ↑cexp 14075 Ccbc 14314 Σcsu 15685 lcmclcmf 16585 ∫citg 25635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cc 10469 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 ax-addf 11228 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-symdif 4241 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-disj 5111 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-ofr 7683 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-fi 9447 df-sup 9478 df-inf 9479 df-oi 9546 df-dju 9937 df-card 9975 df-acn 9978 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-q 12979 df-rp 13023 df-xneg 13140 df-xadd 13141 df-xmul 13142 df-ioo 13376 df-ioc 13377 df-ico 13378 df-icc 13379 df-fz 13533 df-fzo 13676 df-fl 13806 df-mod 13884 df-seq 14016 df-exp 14076 df-fac 14286 df-bc 14315 df-hash 14343 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-limsup 15468 df-clim 15485 df-rlim 15486 df-sum 15686 df-prod 15903 df-dvds 16252 df-lcmf 16587 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-rest 17432 df-topn 17433 df-0g 17451 df-gsum 17452 df-topgen 17453 df-pt 17454 df-prds 17457 df-xrs 17512 df-qtop 17517 df-imas 17518 df-xps 17520 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-mulg 19058 df-cntz 19307 df-cmn 19776 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 df-mopn 21335 df-fbas 21336 df-fg 21337 df-cnfld 21340 df-top 22884 df-topon 22901 df-topsp 22923 df-bases 22937 df-cld 23011 df-ntr 23012 df-cls 23013 df-nei 23090 df-lp 23128 df-perf 23129 df-cn 23219 df-cnp 23220 df-haus 23307 df-cmp 23379 df-tx 23554 df-hmeo 23747 df-fil 23838 df-fm 23930 df-flim 23931 df-flf 23932 df-xms 24314 df-ms 24315 df-tms 24316 df-cncf 24886 df-ovol 25481 df-vol 25482 df-mbf 25636 df-itg1 25637 df-itg2 25638 df-ibl 25639 df-itg 25640 df-0p 25687 df-limc 25883 df-dv 25884 |
This theorem is referenced by: lcmineqlem15 41755 |
Copyright terms: Public domain | W3C validator |