| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem6 | Structured version Visualization version GIF version | ||
| Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024.) |
| Ref | Expression |
|---|---|
| lcmineqlem6.1 | ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 |
| lcmineqlem6.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| lcmineqlem6.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| lcmineqlem6.4 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| lcmineqlem6 | ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmineqlem6.1 | . . . . . 6 ⊢ 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁 − 𝑀))) d𝑥 | |
| 2 | lcmineqlem6.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | lcmineqlem6.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 4 | lcmineqlem6.4 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
| 5 | 1, 2, 3, 4 | lcmineqlem3 42144 | . . . . 5 ⊢ (𝜑 → 𝐹 = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) |
| 6 | 5 | oveq2d 7368 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
| 7 | fzfid 13882 | . . . . 5 ⊢ (𝜑 → (0...(𝑁 − 𝑀)) ∈ Fin) | |
| 8 | fz1ssnn 13457 | . . . . . . . . 9 ⊢ (1...𝑁) ⊆ ℕ | |
| 9 | fzfi 13881 | . . . . . . . . 9 ⊢ (1...𝑁) ∈ Fin | |
| 10 | 8, 9 | pm3.2i 470 | . . . . . . . 8 ⊢ ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) |
| 11 | lcmfnncl 16542 | . . . . . . . 8 ⊢ (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ (lcm‘(1...𝑁)) ∈ ℕ |
| 13 | 12 | nncni 12142 | . . . . . 6 ⊢ (lcm‘(1...𝑁)) ∈ ℂ |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → (lcm‘(1...𝑁)) ∈ ℂ) |
| 15 | elfzelz 13426 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℤ) | |
| 16 | m1expcl 13995 | . . . . . . . . . 10 ⊢ (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ) | |
| 17 | 15, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℤ) |
| 18 | 17 | zcnd 12584 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → (-1↑𝑘) ∈ ℂ) |
| 19 | 18 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℂ) |
| 20 | bccl2 14232 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℕ) | |
| 21 | 20 | nncnd 12148 | . . . . . . . 8 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
| 22 | 21 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℂ) |
| 23 | 19, 22 | mulcld 11139 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℂ) |
| 24 | 3 | nncnd 12148 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 25 | 24 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℂ) |
| 26 | 15 | zcnd 12584 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℂ) |
| 27 | 26 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ ℂ) |
| 28 | 25, 27 | addcld 11138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℂ) |
| 29 | elfznn0 13522 | . . . . . . . . . 10 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ0) | |
| 30 | nnnn0addcl 12418 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ) | |
| 31 | 29, 30 | sylan2 593 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
| 32 | 3, 31 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ∈ ℕ) |
| 33 | 32 | nnne0d 12182 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (𝑀 + 𝑘) ≠ 0) |
| 34 | 28, 33 | reccld 11897 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (1 / (𝑀 + 𝑘)) ∈ ℂ) |
| 35 | 23, 34 | mulcld 11139 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))) ∈ ℂ) |
| 36 | 7, 14, 35 | fsummulc2 15693 | . . . 4 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
| 37 | 6, 36 | eqtrd 2768 | . . 3 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))) |
| 38 | 13 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (lcm‘(1...𝑁)) ∈ ℂ) |
| 39 | 38, 23, 28, 33 | lcmineqlem5 42146 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
| 40 | 39 | sumeq2dv 15611 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
| 41 | 37, 40 | eqtrd 2768 | . 2 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)))) |
| 42 | 17 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (-1↑𝑘) ∈ ℤ) |
| 43 | 20 | nnzd 12501 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑀)) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
| 44 | 43 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((𝑁 − 𝑀)C𝑘) ∈ ℤ) |
| 45 | 42, 44 | zmulcld 12589 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) ∈ ℤ) |
| 46 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑁 ∈ ℕ) |
| 47 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ∈ ℕ) |
| 48 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑀 ≤ 𝑁) |
| 49 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → 𝑘 ∈ (0...(𝑁 − 𝑀))) | |
| 50 | 46, 47, 48, 49 | lcmineqlem4 42145 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)) ∈ ℤ) |
| 51 | 45, 50 | zmulcld 12589 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...(𝑁 − 𝑀))) → (((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
| 52 | 7, 51 | fsumzcl 15644 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 𝑀))(((-1↑𝑘) · ((𝑁 − 𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ) |
| 53 | 41, 52 | eqeltrd 2833 | 1 ⊢ (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 ℂcc 11011 0cc0 11013 1c1 11014 + caddc 11016 · cmul 11018 ≤ cle 11154 − cmin 11351 -cneg 11352 / cdiv 11781 ℕcn 12132 ℕ0cn0 12388 ℤcz 12475 [,]cicc 13250 ...cfz 13409 ↑cexp 13970 Ccbc 14211 Σcsu 15595 lcmclcmf 16502 ∫citg 25547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-symdif 4202 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-prod 15813 df-dvds 16166 df-lcmf 16504 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-ovol 25393 df-vol 25394 df-mbf 25548 df-itg1 25549 df-itg2 25550 df-ibl 25551 df-itg 25552 df-0p 25599 df-limc 25795 df-dv 25796 |
| This theorem is referenced by: lcmineqlem15 42156 |
| Copyright terms: Public domain | W3C validator |