Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem6 Structured version   Visualization version   GIF version

Theorem lcmineqlem6 40031
Description: Part of lcm inequality lemma, this part eventually shows that F times the least common multiple of 1 to n is an integer. (Contributed by metakunt, 10-May-2024.)
Hypotheses
Ref Expression
lcmineqlem6.1 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
lcmineqlem6.2 (𝜑𝑁 ∈ ℕ)
lcmineqlem6.3 (𝜑𝑀 ∈ ℕ)
lcmineqlem6.4 (𝜑𝑀𝑁)
Assertion
Ref Expression
lcmineqlem6 (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem lcmineqlem6
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lcmineqlem6.1 . . . . . 6 𝐹 = ∫(0[,]1)((𝑥↑(𝑀 − 1)) · ((1 − 𝑥)↑(𝑁𝑀))) d𝑥
2 lcmineqlem6.2 . . . . . 6 (𝜑𝑁 ∈ ℕ)
3 lcmineqlem6.3 . . . . . 6 (𝜑𝑀 ∈ ℕ)
4 lcmineqlem6.4 . . . . . 6 (𝜑𝑀𝑁)
51, 2, 3, 4lcmineqlem3 40028 . . . . 5 (𝜑𝐹 = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))))
65oveq2d 7285 . . . 4 (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))))
7 fzfid 13683 . . . . 5 (𝜑 → (0...(𝑁𝑀)) ∈ Fin)
8 fz1ssnn 13278 . . . . . . . . 9 (1...𝑁) ⊆ ℕ
9 fzfi 13682 . . . . . . . . 9 (1...𝑁) ∈ Fin
108, 9pm3.2i 471 . . . . . . . 8 ((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin)
11 lcmfnncl 16324 . . . . . . . 8 (((1...𝑁) ⊆ ℕ ∧ (1...𝑁) ∈ Fin) → (lcm‘(1...𝑁)) ∈ ℕ)
1210, 11ax-mp 5 . . . . . . 7 (lcm‘(1...𝑁)) ∈ ℕ
1312nncni 11975 . . . . . 6 (lcm‘(1...𝑁)) ∈ ℂ
1413a1i 11 . . . . 5 (𝜑 → (lcm‘(1...𝑁)) ∈ ℂ)
15 elfzelz 13247 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℤ)
16 m1expcl 13795 . . . . . . . . . 10 (𝑘 ∈ ℤ → (-1↑𝑘) ∈ ℤ)
1715, 16syl 17 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁𝑀)) → (-1↑𝑘) ∈ ℤ)
1817zcnd 12418 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑀)) → (-1↑𝑘) ∈ ℂ)
1918adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (-1↑𝑘) ∈ ℂ)
20 bccl2 14027 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁𝑀)) → ((𝑁𝑀)C𝑘) ∈ ℕ)
2120nncnd 11981 . . . . . . . 8 (𝑘 ∈ (0...(𝑁𝑀)) → ((𝑁𝑀)C𝑘) ∈ ℂ)
2221adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℂ)
2319, 22mulcld 10988 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((-1↑𝑘) · ((𝑁𝑀)C𝑘)) ∈ ℂ)
243nncnd 11981 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
2524adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℂ)
2615zcnd 12418 . . . . . . . . 9 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℂ)
2726adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ ℂ)
2825, 27addcld 10987 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℂ)
29 elfznn0 13340 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑁𝑀)) → 𝑘 ∈ ℕ0)
30 nnnn0addcl 12255 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑀 + 𝑘) ∈ ℕ)
3129, 30sylan2 593 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℕ)
323, 31sylan 580 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ∈ ℕ)
3332nnne0d 12015 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (𝑀 + 𝑘) ≠ 0)
3428, 33reccld 11736 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (1 / (𝑀 + 𝑘)) ∈ ℂ)
3523, 34mulcld 10988 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘))) ∈ ℂ)
367, 14, 35fsummulc2 15486 . . . 4 (𝜑 → ((lcm‘(1...𝑁)) · Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))))
376, 36eqtrd 2780 . . 3 (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))))
3813a1i 11 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (lcm‘(1...𝑁)) ∈ ℂ)
3938, 23, 28, 33lcmineqlem5 40030 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))))
4039sumeq2dv 15405 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))((lcm‘(1...𝑁)) · (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · (1 / (𝑀 + 𝑘)))) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))))
4137, 40eqtrd 2780 . 2 (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) = Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))))
4217adantl 482 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (-1↑𝑘) ∈ ℤ)
4320nnzd 12416 . . . . . 6 (𝑘 ∈ (0...(𝑁𝑀)) → ((𝑁𝑀)C𝑘) ∈ ℤ)
4443adantl 482 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((𝑁𝑀)C𝑘) ∈ ℤ)
4542, 44zmulcld 12423 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((-1↑𝑘) · ((𝑁𝑀)C𝑘)) ∈ ℤ)
462adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑁 ∈ ℕ)
473adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀 ∈ ℕ)
484adantr 481 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑀𝑁)
49 simpr 485 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → 𝑘 ∈ (0...(𝑁𝑀)))
5046, 47, 48, 49lcmineqlem4 40029 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → ((lcm‘(1...𝑁)) / (𝑀 + 𝑘)) ∈ ℤ)
5145, 50zmulcld 12423 . . 3 ((𝜑𝑘 ∈ (0...(𝑁𝑀))) → (((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ)
527, 51fsumzcl 15437 . 2 (𝜑 → Σ𝑘 ∈ (0...(𝑁𝑀))(((-1↑𝑘) · ((𝑁𝑀)C𝑘)) · ((lcm‘(1...𝑁)) / (𝑀 + 𝑘))) ∈ ℤ)
5341, 52eqeltrd 2841 1 (𝜑 → ((lcm‘(1...𝑁)) · 𝐹) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wss 3892   class class class wbr 5079  cfv 6431  (class class class)co 7269  Fincfn 8708  cc 10862  0cc0 10864  1c1 10865   + caddc 10867   · cmul 10869  cle 11003  cmin 11197  -cneg 11198   / cdiv 11624  cn 11965  0cn0 12225  cz 12311  [,]cicc 13073  ...cfz 13230  cexp 13772  Ccbc 14006  Σcsu 15387  lcmclcmf 16284  citg 24772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9369  ax-cc 10184  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942  ax-addf 10943  ax-mulf 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-symdif 4182  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-disj 5045  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-ofr 7526  df-om 7702  df-1st 7818  df-2nd 7819  df-supp 7963  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-2o 8283  df-oadd 8286  df-omul 8287  df-er 8473  df-map 8592  df-pm 8593  df-ixp 8661  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-fsupp 9099  df-fi 9140  df-sup 9171  df-inf 9172  df-oi 9239  df-dju 9652  df-card 9690  df-acn 9693  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-div 11625  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-7 12033  df-8 12034  df-9 12035  df-n0 12226  df-z 12312  df-dec 12429  df-uz 12574  df-q 12680  df-rp 12722  df-xneg 12839  df-xadd 12840  df-xmul 12841  df-ioo 13074  df-ioc 13075  df-ico 13076  df-icc 13077  df-fz 13231  df-fzo 13374  df-fl 13502  df-mod 13580  df-seq 13712  df-exp 13773  df-fac 13978  df-bc 14007  df-hash 14035  df-cj 14800  df-re 14801  df-im 14802  df-sqrt 14936  df-abs 14937  df-limsup 15170  df-clim 15187  df-rlim 15188  df-sum 15388  df-prod 15606  df-dvds 15954  df-lcmf 16286  df-struct 16838  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-mulr 16966  df-starv 16967  df-sca 16968  df-vsca 16969  df-ip 16970  df-tset 16971  df-ple 16972  df-ds 16974  df-unif 16975  df-hom 16976  df-cco 16977  df-rest 17123  df-topn 17124  df-0g 17142  df-gsum 17143  df-topgen 17144  df-pt 17145  df-prds 17148  df-xrs 17203  df-qtop 17208  df-imas 17209  df-xps 17211  df-mre 17285  df-mrc 17286  df-acs 17288  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-submnd 18421  df-mulg 18691  df-cntz 18913  df-cmn 19378  df-psmet 20579  df-xmet 20580  df-met 20581  df-bl 20582  df-mopn 20583  df-fbas 20584  df-fg 20585  df-cnfld 20588  df-top 22033  df-topon 22050  df-topsp 22072  df-bases 22086  df-cld 22160  df-ntr 22161  df-cls 22162  df-nei 22239  df-lp 22277  df-perf 22278  df-cn 22368  df-cnp 22369  df-haus 22456  df-cmp 22528  df-tx 22703  df-hmeo 22896  df-fil 22987  df-fm 23079  df-flim 23080  df-flf 23081  df-xms 23463  df-ms 23464  df-tms 23465  df-cncf 24031  df-ovol 24618  df-vol 24619  df-mbf 24773  df-itg1 24774  df-itg2 24775  df-ibl 24776  df-itg 24777  df-0p 24824  df-limc 25020  df-dv 25021
This theorem is referenced by:  lcmineqlem15  40040
  Copyright terms: Public domain W3C validator