Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > binom11 | Structured version Visualization version GIF version |
Description: Special case of the binomial theorem for 2↑𝑁. (Contributed by Mario Carneiro, 13-Mar-2014.) |
Ref | Expression |
---|---|
binom11 | ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12141 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 7351 | . . 3 ⊢ (2↑𝑁) = ((1 + 1)↑𝑁) |
3 | ax-1cn 11034 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | binom1p 15642 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (1↑𝑘))) | |
5 | 3, 4 | mpan 688 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((1 + 1)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (1↑𝑘))) |
6 | 2, 5 | eqtrid 2789 | . 2 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (1↑𝑘))) |
7 | elfzelz 13361 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) | |
8 | 1exp 13917 | . . . . . 6 ⊢ (𝑘 ∈ ℤ → (1↑𝑘) = 1) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝑘 ∈ (0...𝑁) → (1↑𝑘) = 1) |
10 | 9 | oveq2d 7357 | . . . 4 ⊢ (𝑘 ∈ (0...𝑁) → ((𝑁C𝑘) · (1↑𝑘)) = ((𝑁C𝑘) · 1)) |
11 | bccl2 14142 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℕ) | |
12 | 11 | nncnd 12094 | . . . . 5 ⊢ (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) ∈ ℂ) |
13 | 12 | mulid1d 11097 | . . . 4 ⊢ (𝑘 ∈ (0...𝑁) → ((𝑁C𝑘) · 1) = (𝑁C𝑘)) |
14 | 10, 13 | eqtrd 2777 | . . 3 ⊢ (𝑘 ∈ (0...𝑁) → ((𝑁C𝑘) · (1↑𝑘)) = (𝑁C𝑘)) |
15 | 14 | sumeq2i 15510 | . 2 ⊢ Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (1↑𝑘)) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘) |
16 | 6, 15 | eqtrdi 2793 | 1 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) = Σ𝑘 ∈ (0...𝑁)(𝑁C𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 (class class class)co 7341 ℂcc 10974 0cc0 10976 1c1 10977 + caddc 10979 · cmul 10981 2c2 12133 ℕ0cn0 12338 ℤcz 12424 ...cfz 13344 ↑cexp 13887 Ccbc 14121 Σcsu 15496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-sup 9303 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-fz 13345 df-fzo 13488 df-seq 13827 df-exp 13888 df-fac 14093 df-bc 14122 df-hash 14150 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-clim 15296 df-sum 15497 |
This theorem is referenced by: chtublem 26464 lcmineqlem17 40358 |
Copyright terms: Public domain | W3C validator |