Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segleantisym Structured version   Visualization version   GIF version

Theorem segleantisym 34700
Description: Antisymmetry law for segment comparison. Theorem 5.9 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 14-Oct-2013.)
Assertion
Ref Expression
segleantisym ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))

Proof of Theorem segleantisym
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsegle 34693 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
2 brsegle2 34694 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩ ↔ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)))
323com23 1126 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩ ↔ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)))
41, 3anbi12d 631 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))))
5 reeanv 3217 . . 3 (∃𝑦 ∈ (𝔼‘𝑁)∃𝑡 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)))
64, 5bitr4di 288 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑡 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))))
7 simpl1 1191 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
8 simpl3l 1228 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
9 simprr 771 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝑡 ∈ (𝔼‘𝑁))
10 simprl 769 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
11 simpl3r 1229 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
12 simprll 777 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
13 simprrl 779 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 Btwn ⟨𝐶, 𝑡⟩)
147, 8, 10, 11, 9, 12, 13btwnexchand 34611 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐶, 𝑡⟩)
15 simpl2l 1226 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
16 simpl2r 1227 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
17 simprrr 780 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)
18 simprlr 778 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
197, 8, 9, 15, 16, 8, 10, 17, 18cgrtrand 34578 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐶, 𝑡⟩Cgr⟨𝐶, 𝑦⟩)
207, 8, 9, 10, 14, 19endofsegidand 34671 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑡 = 𝑦)
21 opeq2 4831 . . . . . . . . . 10 (𝑡 = 𝑦 → ⟨𝐶, 𝑡⟩ = ⟨𝐶, 𝑦⟩)
2221breq2d 5117 . . . . . . . . 9 (𝑡 = 𝑦 → (𝐷 Btwn ⟨𝐶, 𝑡⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑦⟩))
2321breq1d 5115 . . . . . . . . 9 (𝑡 = 𝑦 → (⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))
2422, 23anbi12d 631 . . . . . . . 8 (𝑡 = 𝑦 → ((𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)))
2524anbi2d 629 . . . . . . 7 (𝑡 = 𝑦 → (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))))
2625anbi2d 629 . . . . . 6 (𝑡 = 𝑦 → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)))))
27 simprrl 779 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 Btwn ⟨𝐶, 𝑦⟩)
287, 11, 8, 10, 27btwncomand 34600 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 Btwn ⟨𝑦, 𝐶⟩)
29 simprll 777 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
307, 10, 8, 11, 29btwncomand 34600 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐷, 𝐶⟩)
31 btwnswapid 34602 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑦, 𝐶⟩ ∧ 𝑦 Btwn ⟨𝐷, 𝐶⟩) → 𝐷 = 𝑦))
327, 11, 10, 8, 31syl13anc 1372 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑦, 𝐶⟩ ∧ 𝑦 Btwn ⟨𝐷, 𝐶⟩) → 𝐷 = 𝑦))
3332adantr 481 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝐷 Btwn ⟨𝑦, 𝐶⟩ ∧ 𝑦 Btwn ⟨𝐷, 𝐶⟩) → 𝐷 = 𝑦))
3428, 30, 33mp2and 697 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 = 𝑦)
35 simprlr 778 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
36 opeq2 4831 . . . . . . . . 9 (𝐷 = 𝑦 → ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝑦⟩)
3736breq2d 5117 . . . . . . . 8 (𝐷 = 𝑦 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
3835, 37syl5ibrcom 246 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐷 = 𝑦 → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))
3934, 38mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
4026, 39syl6bi 252 . . . . 5 (𝑡 = 𝑦 → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))
4120, 40mpcom 38 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
4241exp31 420 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁)) → (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)))
4342rexlimdvv 3204 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)∃𝑡 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))
446, 43sylbid 239 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  cop 4592   class class class wbr 5105  cfv 6496  cn 12153  𝔼cee 27837   Btwn cbtwn 27838  Cgrccgr 27839   Seg csegle 34691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-ee 27840  df-btwn 27841  df-cgr 27842  df-ofs 34568  df-colinear 34624  df-ifs 34625  df-cgr3 34626  df-segle 34692
This theorem is referenced by:  colinbtwnle  34703
  Copyright terms: Public domain W3C validator