Step | Hyp | Ref
| Expression |
1 | | brsegle 34739 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg≤ ⟨𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) |
2 | | brsegle2 34740 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg≤ ⟨𝐴, 𝐵⟩ ↔ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) |
3 | 2 | 3com23 1127 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg≤ ⟨𝐴, 𝐵⟩ ↔ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) |
4 | 1, 3 | anbi12d 632 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg≤ ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg≤ ⟨𝐴, 𝐵⟩) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)))) |
5 | | reeanv 3216 |
. . 3
⊢
(∃𝑦 ∈
(𝔼‘𝑁)∃𝑡 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) |
6 | 4, 5 | bitr4di 289 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg≤ ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg≤ ⟨𝐴, 𝐵⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑡 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)))) |
7 | | simpl1 1192 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
8 | | simpl3l 1229 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
9 | | simprr 772 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝑡 ∈ (𝔼‘𝑁)) |
10 | | simprl 770 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁)) |
11 | | simpl3r 1230 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
12 | | simprll 778 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐶, 𝐷⟩) |
13 | | simprrl 780 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 Btwn ⟨𝐶, 𝑡⟩) |
14 | 7, 8, 10, 11, 9, 12, 13 | btwnexchand 34657 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐶, 𝑡⟩) |
15 | | simpl2l 1227 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
16 | | simpl2r 1228 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
17 | | simprrr 781 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩) |
18 | | simprlr 779 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) |
19 | 7, 8, 9, 15, 16, 8, 10, 17, 18 | cgrtrand 34624 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐶, 𝑡⟩Cgr⟨𝐶, 𝑦⟩) |
20 | 7, 8, 9, 10, 14, 19 | endofsegidand 34717 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑡 = 𝑦) |
21 | | opeq2 4832 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑦 → ⟨𝐶, 𝑡⟩ = ⟨𝐶, 𝑦⟩) |
22 | 21 | breq2d 5118 |
. . . . . . . . 9
⊢ (𝑡 = 𝑦 → (𝐷 Btwn ⟨𝐶, 𝑡⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑦⟩)) |
23 | 21 | breq1d 5116 |
. . . . . . . . 9
⊢ (𝑡 = 𝑦 → (⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)) |
24 | 22, 23 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑡 = 𝑦 → ((𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) |
25 | 24 | anbi2d 630 |
. . . . . . 7
⊢ (𝑡 = 𝑦 → (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)))) |
26 | 25 | anbi2d 630 |
. . . . . 6
⊢ (𝑡 = 𝑦 → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))))) |
27 | | simprrl 780 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 Btwn ⟨𝐶, 𝑦⟩) |
28 | 7, 11, 8, 10, 27 | btwncomand 34646 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 Btwn ⟨𝑦, 𝐶⟩) |
29 | | simprll 778 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐶, 𝐷⟩) |
30 | 7, 10, 8, 11, 29 | btwncomand 34646 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐷, 𝐶⟩) |
31 | | btwnswapid 34648 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑦, 𝐶⟩ ∧ 𝑦 Btwn ⟨𝐷, 𝐶⟩) → 𝐷 = 𝑦)) |
32 | 7, 11, 10, 8, 31 | syl13anc 1373 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑦, 𝐶⟩ ∧ 𝑦 Btwn ⟨𝐷, 𝐶⟩) → 𝐷 = 𝑦)) |
33 | 32 | adantr 482 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝐷 Btwn ⟨𝑦, 𝐶⟩ ∧ 𝑦 Btwn ⟨𝐷, 𝐶⟩) → 𝐷 = 𝑦)) |
34 | 28, 30, 33 | mp2and 698 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 = 𝑦) |
35 | | simprlr 779 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) |
36 | | opeq2 4832 |
. . . . . . . . 9
⊢ (𝐷 = 𝑦 → ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝑦⟩) |
37 | 36 | breq2d 5118 |
. . . . . . . 8
⊢ (𝐷 = 𝑦 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) |
38 | 35, 37 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐷 = 𝑦 → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)) |
39 | 34, 38 | mpd 15 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩) |
40 | 26, 39 | syl6bi 253 |
. . . . 5
⊢ (𝑡 = 𝑦 → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)) |
41 | 20, 40 | mpcom 38 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩) |
42 | 41 | exp31 421 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁)) → (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))) |
43 | 42 | rexlimdvv 3201 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)∃𝑡 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)) |
44 | 6, 43 | sylbid 239 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg≤ ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg≤ ⟨𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)) |