Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segleantisym Structured version   Visualization version   GIF version

Theorem segleantisym 36103
Description: Antisymmetry law for segment comparison. Theorem 5.9 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 14-Oct-2013.)
Assertion
Ref Expression
segleantisym ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))

Proof of Theorem segleantisym
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brsegle 36096 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
2 brsegle2 36097 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩ ↔ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)))
323com23 1126 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩ ↔ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)))
41, 3anbi12d 632 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))))
5 reeanv 3209 . . 3 (∃𝑦 ∈ (𝔼‘𝑁)∃𝑡 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ ∃𝑡 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)))
64, 5bitr4di 289 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)∃𝑡 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))))
7 simpl1 1192 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
8 simpl3l 1229 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
9 simprr 772 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝑡 ∈ (𝔼‘𝑁))
10 simprl 770 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝑦 ∈ (𝔼‘𝑁))
11 simpl3r 1230 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
12 simprll 778 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
13 simprrl 780 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 Btwn ⟨𝐶, 𝑡⟩)
147, 8, 10, 11, 9, 12, 13btwnexchand 36014 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐶, 𝑡⟩)
15 simpl2l 1227 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
16 simpl2r 1228 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
17 simprrr 781 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)
18 simprlr 779 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
197, 8, 9, 15, 16, 8, 10, 17, 18cgrtrand 35981 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐶, 𝑡⟩Cgr⟨𝐶, 𝑦⟩)
207, 8, 9, 10, 14, 19endofsegidand 36074 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑡 = 𝑦)
21 opeq2 4838 . . . . . . . . . 10 (𝑡 = 𝑦 → ⟨𝐶, 𝑡⟩ = ⟨𝐶, 𝑦⟩)
2221breq2d 5119 . . . . . . . . 9 (𝑡 = 𝑦 → (𝐷 Btwn ⟨𝐶, 𝑡⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑦⟩))
2321breq1d 5117 . . . . . . . . 9 (𝑡 = 𝑦 → (⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))
2422, 23anbi12d 632 . . . . . . . 8 (𝑡 = 𝑦 → ((𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)))
2524anbi2d 630 . . . . . . 7 (𝑡 = 𝑦 → (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))))
2625anbi2d 630 . . . . . 6 (𝑡 = 𝑦 → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)))))
27 simprrl 780 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 Btwn ⟨𝐶, 𝑦⟩)
287, 11, 8, 10, 27btwncomand 36003 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 Btwn ⟨𝑦, 𝐶⟩)
29 simprll 778 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
307, 10, 8, 11, 29btwncomand 36003 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝑦 Btwn ⟨𝐷, 𝐶⟩)
31 btwnswapid 36005 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑦, 𝐶⟩ ∧ 𝑦 Btwn ⟨𝐷, 𝐶⟩) → 𝐷 = 𝑦))
327, 11, 10, 8, 31syl13anc 1374 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑦, 𝐶⟩ ∧ 𝑦 Btwn ⟨𝐷, 𝐶⟩) → 𝐷 = 𝑦))
3332adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝐷 Btwn ⟨𝑦, 𝐶⟩ ∧ 𝑦 Btwn ⟨𝐷, 𝐶⟩) → 𝐷 = 𝑦))
3428, 30, 33mp2and 699 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → 𝐷 = 𝑦)
35 simprlr 779 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
36 opeq2 4838 . . . . . . . . 9 (𝐷 = 𝑦 → ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝑦⟩)
3736breq2d 5119 . . . . . . . 8 (𝐷 = 𝑦 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
3835, 37syl5ibrcom 247 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → (𝐷 = 𝑦 → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))
3934, 38mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑦⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
4026, 39biimtrdi 253 . . . . 5 (𝑡 = 𝑦 → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))
4120, 40mpcom 38 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁))) ∧ ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
4241exp31 419 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝑦 ∈ (𝔼‘𝑁) ∧ 𝑡 ∈ (𝔼‘𝑁)) → (((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)))
4342rexlimdvv 3193 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)∃𝑡 ∈ (𝔼‘𝑁)((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (𝐷 Btwn ⟨𝐶, 𝑡⟩ ∧ ⟨𝐶, 𝑡⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))
446, 43sylbid 240 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cop 4595   class class class wbr 5107  cfv 6511  cn 12186  𝔼cee 28815   Btwn cbtwn 28816  Cgrccgr 28817   Seg csegle 36094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-ee 28818  df-btwn 28819  df-cgr 28820  df-ofs 35971  df-colinear 36027  df-ifs 36028  df-cgr3 36029  df-segle 36095
This theorem is referenced by:  colinbtwnle  36106
  Copyright terms: Public domain W3C validator