Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycl3grtrilem Structured version   Visualization version   GIF version

Theorem cycl3grtrilem 47945
Description: Lemma for cycl3grtri 47946. (Contributed by AV, 5-Oct-2025.)
Assertion
Ref Expression
cycl3grtrilem (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))

Proof of Theorem cycl3grtrilem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pthiswlk 29655 . . . 4 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 eqid 2729 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
32upgrwlkvtxedg 29573 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))
41, 3sylan2 593 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))
54adantr 480 . 2 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))
6 oveq2 7395 . . . . . . 7 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = (0..^3))
7 fzo0to3tp 13713 . . . . . . 7 (0..^3) = {0, 1, 2}
86, 7eqtrdi 2780 . . . . . 6 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = {0, 1, 2})
98adantl 481 . . . . 5 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (0..^(♯‘𝐹)) = {0, 1, 2})
109adantl 481 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (0..^(♯‘𝐹)) = {0, 1, 2})
1110raleqdv 3299 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
12 fveq2 6858 . . . . . . 7 ((♯‘𝐹) = 3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3))
1312eqeq2d 2740 . . . . . 6 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
14 c0ex 11168 . . . . . . . 8 0 ∈ V
15 1ex 11170 . . . . . . . 8 1 ∈ V
16 2ex 12263 . . . . . . . 8 2 ∈ V
17 fveq2 6858 . . . . . . . . . 10 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
18 fv0p1e1 12304 . . . . . . . . . 10 (𝑥 = 0 → (𝑃‘(𝑥 + 1)) = (𝑃‘1))
1917, 18preq12d 4705 . . . . . . . . 9 (𝑥 = 0 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘0), (𝑃‘1)})
2019eleq1d 2813 . . . . . . . 8 (𝑥 = 0 → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)))
21 fveq2 6858 . . . . . . . . . 10 (𝑥 = 1 → (𝑃𝑥) = (𝑃‘1))
22 oveq1 7394 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 + 1) = (1 + 1))
23 1p1e2 12306 . . . . . . . . . . . 12 (1 + 1) = 2
2422, 23eqtrdi 2780 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 + 1) = 2)
2524fveq2d 6862 . . . . . . . . . 10 (𝑥 = 1 → (𝑃‘(𝑥 + 1)) = (𝑃‘2))
2621, 25preq12d 4705 . . . . . . . . 9 (𝑥 = 1 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘1), (𝑃‘2)})
2726eleq1d 2813 . . . . . . . 8 (𝑥 = 1 → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
28 fveq2 6858 . . . . . . . . . 10 (𝑥 = 2 → (𝑃𝑥) = (𝑃‘2))
29 oveq1 7394 . . . . . . . . . . . 12 (𝑥 = 2 → (𝑥 + 1) = (2 + 1))
30 2p1e3 12323 . . . . . . . . . . . 12 (2 + 1) = 3
3129, 30eqtrdi 2780 . . . . . . . . . . 11 (𝑥 = 2 → (𝑥 + 1) = 3)
3231fveq2d 6862 . . . . . . . . . 10 (𝑥 = 2 → (𝑃‘(𝑥 + 1)) = (𝑃‘3))
3328, 32preq12d 4705 . . . . . . . . 9 (𝑥 = 2 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘2), (𝑃‘3)})
3433eleq1d 2813 . . . . . . . 8 (𝑥 = 2 → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)))
3514, 15, 16, 20, 27, 34raltp 4669 . . . . . . 7 (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)))
36 simpr1 1195 . . . . . . . . 9 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))
37 preq2 4698 . . . . . . . . . . . . . 14 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘0)} = {(𝑃‘2), (𝑃‘3)})
38 prcom 4696 . . . . . . . . . . . . . 14 {(𝑃‘2), (𝑃‘0)} = {(𝑃‘0), (𝑃‘2)}
3937, 38eqtr3di 2779 . . . . . . . . . . . . 13 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘0), (𝑃‘2)})
4039eleq1d 2813 . . . . . . . . . . . 12 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
4140biimpcd 249 . . . . . . . . . . 11 ({(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺) → ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
42413ad2ant3 1135 . . . . . . . . . 10 (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)) → ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
4342impcom 407 . . . . . . . . 9 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺))
44 simpr2 1196 . . . . . . . . 9 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))
4536, 43, 443jca 1128 . . . . . . . 8 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
4645ex 412 . . . . . . 7 ((𝑃‘0) = (𝑃‘3) → (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
4735, 46biimtrid 242 . . . . . 6 ((𝑃‘0) = (𝑃‘3) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
4813, 47biimtrdi 253 . . . . 5 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))))
4948impcom 407 . . . 4 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
5049adantl 481 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
5111, 50sylbid 240 . 2 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
525, 51mpd 15 1 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {cpr 4591  {ctp 4593   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  2c2 12241  3c3 12242  ..^cfzo 13615  chash 14295  Edgcedg 28974  UPGraphcupgr 29007  Walkscwlks 29524  Pathscpths 29640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-wlks 29527  df-trls 29620  df-pths 29644
This theorem is referenced by:  cycl3grtri  47946
  Copyright terms: Public domain W3C validator