Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycl3grtrilem Structured version   Visualization version   GIF version

Theorem cycl3grtrilem 47859
Description: Lemma for cycl3grtri 47860. (Contributed by AV, 5-Oct-2025.)
Assertion
Ref Expression
cycl3grtrilem (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))

Proof of Theorem cycl3grtrilem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pthiswlk 29692 . . . 4 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 eqid 2734 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
32upgrwlkvtxedg 29610 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))
41, 3sylan2 593 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))
54adantr 480 . 2 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))
6 oveq2 7422 . . . . . . 7 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = (0..^3))
7 fzo0to3tp 13774 . . . . . . 7 (0..^3) = {0, 1, 2}
86, 7eqtrdi 2785 . . . . . 6 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = {0, 1, 2})
98adantl 481 . . . . 5 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (0..^(♯‘𝐹)) = {0, 1, 2})
109adantl 481 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (0..^(♯‘𝐹)) = {0, 1, 2})
1110raleqdv 3310 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
12 fveq2 6887 . . . . . . 7 ((♯‘𝐹) = 3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3))
1312eqeq2d 2745 . . . . . 6 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
14 c0ex 11238 . . . . . . . 8 0 ∈ V
15 1ex 11240 . . . . . . . 8 1 ∈ V
16 2ex 12326 . . . . . . . 8 2 ∈ V
17 fveq2 6887 . . . . . . . . . 10 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
18 fv0p1e1 12372 . . . . . . . . . 10 (𝑥 = 0 → (𝑃‘(𝑥 + 1)) = (𝑃‘1))
1917, 18preq12d 4723 . . . . . . . . 9 (𝑥 = 0 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘0), (𝑃‘1)})
2019eleq1d 2818 . . . . . . . 8 (𝑥 = 0 → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)))
21 fveq2 6887 . . . . . . . . . 10 (𝑥 = 1 → (𝑃𝑥) = (𝑃‘1))
22 oveq1 7421 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 + 1) = (1 + 1))
23 1p1e2 12374 . . . . . . . . . . . 12 (1 + 1) = 2
2422, 23eqtrdi 2785 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 + 1) = 2)
2524fveq2d 6891 . . . . . . . . . 10 (𝑥 = 1 → (𝑃‘(𝑥 + 1)) = (𝑃‘2))
2621, 25preq12d 4723 . . . . . . . . 9 (𝑥 = 1 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘1), (𝑃‘2)})
2726eleq1d 2818 . . . . . . . 8 (𝑥 = 1 → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
28 fveq2 6887 . . . . . . . . . 10 (𝑥 = 2 → (𝑃𝑥) = (𝑃‘2))
29 oveq1 7421 . . . . . . . . . . . 12 (𝑥 = 2 → (𝑥 + 1) = (2 + 1))
30 2p1e3 12391 . . . . . . . . . . . 12 (2 + 1) = 3
3129, 30eqtrdi 2785 . . . . . . . . . . 11 (𝑥 = 2 → (𝑥 + 1) = 3)
3231fveq2d 6891 . . . . . . . . . 10 (𝑥 = 2 → (𝑃‘(𝑥 + 1)) = (𝑃‘3))
3328, 32preq12d 4723 . . . . . . . . 9 (𝑥 = 2 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘2), (𝑃‘3)})
3433eleq1d 2818 . . . . . . . 8 (𝑥 = 2 → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)))
3514, 15, 16, 20, 27, 34raltp 4687 . . . . . . 7 (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)))
36 simpr1 1194 . . . . . . . . 9 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))
37 preq2 4716 . . . . . . . . . . . . . 14 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘0)} = {(𝑃‘2), (𝑃‘3)})
38 prcom 4714 . . . . . . . . . . . . . 14 {(𝑃‘2), (𝑃‘0)} = {(𝑃‘0), (𝑃‘2)}
3937, 38eqtr3di 2784 . . . . . . . . . . . . 13 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘0), (𝑃‘2)})
4039eleq1d 2818 . . . . . . . . . . . 12 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
4140biimpcd 249 . . . . . . . . . . 11 ({(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺) → ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
42413ad2ant3 1135 . . . . . . . . . 10 (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)) → ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
4342impcom 407 . . . . . . . . 9 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺))
44 simpr2 1195 . . . . . . . . 9 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))
4536, 43, 443jca 1128 . . . . . . . 8 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
4645ex 412 . . . . . . 7 ((𝑃‘0) = (𝑃‘3) → (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
4735, 46biimtrid 242 . . . . . 6 ((𝑃‘0) = (𝑃‘3) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
4813, 47biimtrdi 253 . . . . 5 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))))
4948impcom 407 . . . 4 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
5049adantl 481 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
5111, 50sylbid 240 . 2 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
525, 51mpd 15 1 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  {cpr 4610  {ctp 4612   class class class wbr 5125  cfv 6542  (class class class)co 7414  0cc0 11138  1c1 11139   + caddc 11141  2c2 12304  3c3 12305  ..^cfzo 13677  chash 14352  Edgcedg 29011  UPGraphcupgr 29044  Walkscwlks 29561  Pathscpths 29677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-2o 8490  df-oadd 8493  df-er 8728  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-xnn0 12584  df-z 12598  df-uz 12862  df-fz 13531  df-fzo 13678  df-hash 14353  df-word 14536  df-edg 29012  df-uhgr 29022  df-upgr 29046  df-wlks 29564  df-trls 29657  df-pths 29681
This theorem is referenced by:  cycl3grtri  47860
  Copyright terms: Public domain W3C validator