Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycl3grtrilem Structured version   Visualization version   GIF version

Theorem cycl3grtrilem 47976
Description: Lemma for cycl3grtri 47977. (Contributed by AV, 5-Oct-2025.)
Assertion
Ref Expression
cycl3grtrilem (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))

Proof of Theorem cycl3grtrilem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pthiswlk 29701 . . . 4 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
2 eqid 2731 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
32upgrwlkvtxedg 29621 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))
41, 3sylan2 593 . . 3 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))
54adantr 480 . 2 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))
6 oveq2 7354 . . . . . . 7 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = (0..^3))
7 fzo0to3tp 13649 . . . . . . 7 (0..^3) = {0, 1, 2}
86, 7eqtrdi 2782 . . . . . 6 ((♯‘𝐹) = 3 → (0..^(♯‘𝐹)) = {0, 1, 2})
98adantl 481 . . . . 5 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (0..^(♯‘𝐹)) = {0, 1, 2})
109adantl 481 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (0..^(♯‘𝐹)) = {0, 1, 2})
1110raleqdv 3292 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺)))
12 fveq2 6822 . . . . . . 7 ((♯‘𝐹) = 3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3))
1312eqeq2d 2742 . . . . . 6 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3)))
14 c0ex 11103 . . . . . . . 8 0 ∈ V
15 1ex 11105 . . . . . . . 8 1 ∈ V
16 2ex 12199 . . . . . . . 8 2 ∈ V
17 fveq2 6822 . . . . . . . . . 10 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
18 fv0p1e1 12240 . . . . . . . . . 10 (𝑥 = 0 → (𝑃‘(𝑥 + 1)) = (𝑃‘1))
1917, 18preq12d 4694 . . . . . . . . 9 (𝑥 = 0 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘0), (𝑃‘1)})
2019eleq1d 2816 . . . . . . . 8 (𝑥 = 0 → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)))
21 fveq2 6822 . . . . . . . . . 10 (𝑥 = 1 → (𝑃𝑥) = (𝑃‘1))
22 oveq1 7353 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑥 + 1) = (1 + 1))
23 1p1e2 12242 . . . . . . . . . . . 12 (1 + 1) = 2
2422, 23eqtrdi 2782 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 + 1) = 2)
2524fveq2d 6826 . . . . . . . . . 10 (𝑥 = 1 → (𝑃‘(𝑥 + 1)) = (𝑃‘2))
2621, 25preq12d 4694 . . . . . . . . 9 (𝑥 = 1 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘1), (𝑃‘2)})
2726eleq1d 2816 . . . . . . . 8 (𝑥 = 1 → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
28 fveq2 6822 . . . . . . . . . 10 (𝑥 = 2 → (𝑃𝑥) = (𝑃‘2))
29 oveq1 7353 . . . . . . . . . . . 12 (𝑥 = 2 → (𝑥 + 1) = (2 + 1))
30 2p1e3 12259 . . . . . . . . . . . 12 (2 + 1) = 3
3129, 30eqtrdi 2782 . . . . . . . . . . 11 (𝑥 = 2 → (𝑥 + 1) = 3)
3231fveq2d 6826 . . . . . . . . . 10 (𝑥 = 2 → (𝑃‘(𝑥 + 1)) = (𝑃‘3))
3328, 32preq12d 4694 . . . . . . . . 9 (𝑥 = 2 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘2), (𝑃‘3)})
3433eleq1d 2816 . . . . . . . 8 (𝑥 = 2 → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)))
3514, 15, 16, 20, 27, 34raltp 4658 . . . . . . 7 (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)))
36 simpr1 1195 . . . . . . . . 9 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))
37 preq2 4687 . . . . . . . . . . . . . 14 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘0)} = {(𝑃‘2), (𝑃‘3)})
38 prcom 4685 . . . . . . . . . . . . . 14 {(𝑃‘2), (𝑃‘0)} = {(𝑃‘0), (𝑃‘2)}
3937, 38eqtr3di 2781 . . . . . . . . . . . . 13 ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘0), (𝑃‘2)})
4039eleq1d 2816 . . . . . . . . . . . 12 ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
4140biimpcd 249 . . . . . . . . . . 11 ({(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺) → ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
42413ad2ant3 1135 . . . . . . . . . 10 (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)) → ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)))
4342impcom 407 . . . . . . . . 9 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺))
44 simpr2 1196 . . . . . . . . 9 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))
4536, 43, 443jca 1128 . . . . . . . 8 (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
4645ex 412 . . . . . . 7 ((𝑃‘0) = (𝑃‘3) → (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
4735, 46biimtrid 242 . . . . . 6 ((𝑃‘0) = (𝑃‘3) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
4813, 47biimtrdi 253 . . . . 5 ((♯‘𝐹) = 3 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))))
4948impcom 407 . . . 4 (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
5049adantl 481 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ {0, 1, 2} {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
5111, 50sylbid 240 . 2 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))
525, 51mpd 15 1 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {cpr 4578  {ctp 4580   class class class wbr 5091  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006  2c2 12177  3c3 12178  ..^cfzo 13551  chash 14234  Edgcedg 29023  UPGraphcupgr 29056  Walkscwlks 29573  Pathscpths 29686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-edg 29024  df-uhgr 29034  df-upgr 29058  df-wlks 29576  df-trls 29667  df-pths 29690
This theorem is referenced by:  cycl3grtri  47977
  Copyright terms: Public domain W3C validator