Step | Hyp | Ref
| Expression |
1 | | pthiswlk 29768 |
. . . 4
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
2 | | eqid 2736 |
. . . . 5
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
3 | 2 | upgrwlkvtxedg 29686 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺)) |
4 | 1, 3 | sylan2 593 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺)) |
5 | 4 | adantr 480 |
. 2
⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺)) |
6 | | oveq2 7443 |
. . . . . . 7
⊢
((♯‘𝐹) =
3 → (0..^(♯‘𝐹)) = (0..^3)) |
7 | | fzo0to3tp 13794 |
. . . . . . 7
⊢ (0..^3) =
{0, 1, 2} |
8 | 6, 7 | eqtrdi 2792 |
. . . . . 6
⊢
((♯‘𝐹) =
3 → (0..^(♯‘𝐹)) = {0, 1, 2}) |
9 | 8 | adantl 481 |
. . . . 5
⊢ (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (0..^(♯‘𝐹)) = {0, 1, 2}) |
10 | 9 | adantl 481 |
. . . 4
⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (0..^(♯‘𝐹)) = {0, 1, 2}) |
11 | 10 | raleqdv 3325 |
. . 3
⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑥 ∈ {0, 1, 2} {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺))) |
12 | | fveq2 6911 |
. . . . . . 7
⊢
((♯‘𝐹) =
3 → (𝑃‘(♯‘𝐹)) = (𝑃‘3)) |
13 | 12 | eqeq2d 2747 |
. . . . . 6
⊢
((♯‘𝐹) =
3 → ((𝑃‘0) =
(𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) = (𝑃‘3))) |
14 | | c0ex 11259 |
. . . . . . . 8
⊢ 0 ∈
V |
15 | | 1ex 11261 |
. . . . . . . 8
⊢ 1 ∈
V |
16 | | 2ex 12347 |
. . . . . . . 8
⊢ 2 ∈
V |
17 | | fveq2 6911 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝑃‘𝑥) = (𝑃‘0)) |
18 | | fv0p1e1 12393 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (𝑃‘(𝑥 + 1)) = (𝑃‘1)) |
19 | 17, 18 | preq12d 4747 |
. . . . . . . . 9
⊢ (𝑥 = 0 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘0), (𝑃‘1)}) |
20 | 19 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑥 = 0 → ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺))) |
21 | | fveq2 6911 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝑃‘𝑥) = (𝑃‘1)) |
22 | | oveq1 7442 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → (𝑥 + 1) = (1 + 1)) |
23 | | 1p1e2 12395 |
. . . . . . . . . . . 12
⊢ (1 + 1) =
2 |
24 | 22, 23 | eqtrdi 2792 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝑥 + 1) = 2) |
25 | 24 | fveq2d 6915 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝑃‘(𝑥 + 1)) = (𝑃‘2)) |
26 | 21, 25 | preq12d 4747 |
. . . . . . . . 9
⊢ (𝑥 = 1 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘1), (𝑃‘2)}) |
27 | 26 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑥 = 1 → ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) |
28 | | fveq2 6911 |
. . . . . . . . . 10
⊢ (𝑥 = 2 → (𝑃‘𝑥) = (𝑃‘2)) |
29 | | oveq1 7442 |
. . . . . . . . . . . 12
⊢ (𝑥 = 2 → (𝑥 + 1) = (2 + 1)) |
30 | | 2p1e3 12412 |
. . . . . . . . . . . 12
⊢ (2 + 1) =
3 |
31 | 29, 30 | eqtrdi 2792 |
. . . . . . . . . . 11
⊢ (𝑥 = 2 → (𝑥 + 1) = 3) |
32 | 31 | fveq2d 6915 |
. . . . . . . . . 10
⊢ (𝑥 = 2 → (𝑃‘(𝑥 + 1)) = (𝑃‘3)) |
33 | 28, 32 | preq12d 4747 |
. . . . . . . . 9
⊢ (𝑥 = 2 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘2), (𝑃‘3)}) |
34 | 33 | eleq1d 2825 |
. . . . . . . 8
⊢ (𝑥 = 2 → ({(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) |
35 | 14, 15, 16, 20, 27, 34 | raltp 4711 |
. . . . . . 7
⊢
(∀𝑥 ∈
{0, 1, 2} {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) ↔ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) |
36 | | simpr1 1194 |
. . . . . . . . 9
⊢ (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺)) |
37 | | preq2 4740 |
. . . . . . . . . . . . . 14
⊢ ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘0)} = {(𝑃‘2), (𝑃‘3)}) |
38 | | prcom 4738 |
. . . . . . . . . . . . . 14
⊢ {(𝑃‘2), (𝑃‘0)} = {(𝑃‘0), (𝑃‘2)} |
39 | 37, 38 | eqtr3di 2791 |
. . . . . . . . . . . . 13
⊢ ((𝑃‘0) = (𝑃‘3) → {(𝑃‘2), (𝑃‘3)} = {(𝑃‘0), (𝑃‘2)}) |
40 | 39 | eleq1d 2825 |
. . . . . . . . . . . 12
⊢ ((𝑃‘0) = (𝑃‘3) → ({(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺) ↔ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺))) |
41 | 40 | biimpcd 249 |
. . . . . . . . . . 11
⊢ ({(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺) → ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺))) |
42 | 41 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)) → ((𝑃‘0) = (𝑃‘3) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺))) |
43 | 42 | impcom 407 |
. . . . . . . . 9
⊢ (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺)) |
44 | | simpr2 1195 |
. . . . . . . . 9
⊢ (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)) |
45 | 36, 43, 44 | 3jca 1128 |
. . . . . . . 8
⊢ (((𝑃‘0) = (𝑃‘3) ∧ ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺))) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) |
46 | 45 | ex 412 |
. . . . . . 7
⊢ ((𝑃‘0) = (𝑃‘3) → (({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘2), (𝑃‘3)} ∈ (Edg‘𝐺)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))) |
47 | 35, 46 | biimtrid 242 |
. . . . . 6
⊢ ((𝑃‘0) = (𝑃‘3) → (∀𝑥 ∈ {0, 1, 2} {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))) |
48 | 13, 47 | biimtrdi 253 |
. . . . 5
⊢
((♯‘𝐹) =
3 → ((𝑃‘0) =
(𝑃‘(♯‘𝐹)) → (∀𝑥 ∈ {0, 1, 2} {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))))) |
49 | 48 | impcom 407 |
. . . 4
⊢ (((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3) → (∀𝑥 ∈ {0, 1, 2} {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))) |
50 | 49 | adantl 481 |
. . 3
⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ {0, 1, 2} {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))) |
51 | 11, 50 | sylbid 240 |
. 2
⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → (∀𝑥 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ∈ (Edg‘𝐺) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺)))) |
52 | 5, 51 | mpd 15 |
1
⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) |