Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashrepr Structured version   Visualization version   GIF version

Theorem hashrepr 32969
Description: Develop the number of representations of an integer 𝑀 as a sum of nonnegative integers in set 𝐴. (Contributed by Thierry Arnoux, 14-Dec-2021.)
Hypotheses
Ref Expression
hashrepr.a (𝜑𝐴 ⊆ ℕ)
hashrepr.m (𝜑𝑀 ∈ ℕ0)
hashrepr.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
hashrepr (𝜑 → (♯‘(𝐴(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Distinct variable groups:   𝐴,𝑎,𝑐   𝑀,𝑎,𝑐   𝑆,𝑎,𝑐   𝜑,𝑎,𝑐

Proof of Theorem hashrepr
StepHypRef Expression
1 hashrepr.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 hashrepr.m . . . 4 (𝜑𝑀 ∈ ℕ0)
32nn0zd 12534 . . 3 (𝜑𝑀 ∈ ℤ)
4 hashrepr.s . . 3 (𝜑𝑆 ∈ ℕ0)
5 fzfid 13803 . . 3 (𝜑 → (1...𝑀) ∈ Fin)
6 fz1ssnn 13397 . . . 4 (1...𝑀) ⊆ ℕ
76a1i 11 . . 3 (𝜑 → (1...𝑀) ⊆ ℕ)
81, 3, 4, 5, 7hashreprin 32964 . 2 (𝜑 → (♯‘((𝐴 ∩ (1...𝑀))(repr‘𝑆)𝑀)) = Σ𝑐 ∈ ((1...𝑀)(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
92, 4, 1reprinfz1 32966 . . 3 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ((𝐴 ∩ (1...𝑀))(repr‘𝑆)𝑀))
109fveq2d 6838 . 2 (𝜑 → (♯‘(𝐴(repr‘𝑆)𝑀)) = (♯‘((𝐴 ∩ (1...𝑀))(repr‘𝑆)𝑀)))
112, 4reprfz1 32968 . . 3 (𝜑 → (ℕ(repr‘𝑆)𝑀) = ((1...𝑀)(repr‘𝑆)𝑀))
1211sumeq1d 15517 . 2 (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) = Σ𝑐 ∈ ((1...𝑀)(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
138, 10, 123eqtr4d 2787 1 (𝜑 → (♯‘(𝐴(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cin 3904  wss 3905  cfv 6488  (class class class)co 7346  0cc0 10981  1c1 10982  cn 12083  0cn0 12343  ...cfz 13349  ..^cfzo 13492  chash 14154  Σcsu 15501  cprod 15719  𝟭cind 32340  reprcrepr 32952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-inf2 9507  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-se 5583  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-1st 7908  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-1o 8376  df-er 8578  df-map 8697  df-pm 8698  df-en 8814  df-dom 8815  df-sdom 8816  df-fin 8817  df-sup 9308  df-oi 9376  df-card 9805  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-div 11743  df-nn 12084  df-2 12146  df-3 12147  df-n0 12344  df-z 12430  df-uz 12693  df-rp 12841  df-ico 13195  df-fz 13350  df-fzo 13493  df-seq 13832  df-exp 13893  df-hash 14155  df-cj 14914  df-re 14915  df-im 14916  df-sqrt 15050  df-abs 15051  df-clim 15301  df-sum 15502  df-prod 15720  df-ind 32341  df-repr 32953
This theorem is referenced by:  circlemethnat  32985
  Copyright terms: Public domain W3C validator