Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hashrepr | Structured version Visualization version GIF version |
Description: Develop the number of representations of an integer 𝑀 as a sum of nonnegative integers in set 𝐴. (Contributed by Thierry Arnoux, 14-Dec-2021.) |
Ref | Expression |
---|---|
hashrepr.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
hashrepr.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
hashrepr.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
Ref | Expression |
---|---|
hashrepr | ⊢ (𝜑 → (♯‘(𝐴(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashrepr.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
2 | hashrepr.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
3 | 2 | nn0zd 12474 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | hashrepr.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
5 | fzfid 13743 | . . 3 ⊢ (𝜑 → (1...𝑀) ∈ Fin) | |
6 | fz1ssnn 13337 | . . . 4 ⊢ (1...𝑀) ⊆ ℕ | |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (1...𝑀) ⊆ ℕ) |
8 | 1, 3, 4, 5, 7 | hashreprin 32649 | . 2 ⊢ (𝜑 → (♯‘((𝐴 ∩ (1...𝑀))(repr‘𝑆)𝑀)) = Σ𝑐 ∈ ((1...𝑀)(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
9 | 2, 4, 1 | reprinfz1 32651 | . . 3 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = ((𝐴 ∩ (1...𝑀))(repr‘𝑆)𝑀)) |
10 | 9 | fveq2d 6808 | . 2 ⊢ (𝜑 → (♯‘(𝐴(repr‘𝑆)𝑀)) = (♯‘((𝐴 ∩ (1...𝑀))(repr‘𝑆)𝑀))) |
11 | 2, 4 | reprfz1 32653 | . . 3 ⊢ (𝜑 → (ℕ(repr‘𝑆)𝑀) = ((1...𝑀)(repr‘𝑆)𝑀)) |
12 | 11 | sumeq1d 15462 | . 2 ⊢ (𝜑 → Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎)) = Σ𝑐 ∈ ((1...𝑀)(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
13 | 8, 10, 12 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → (♯‘(𝐴(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (ℕ(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ⊆ wss 3892 ‘cfv 6458 (class class class)co 7307 0cc0 10921 1c1 10922 ℕcn 12023 ℕ0cn0 12283 ...cfz 13289 ..^cfzo 13432 ♯chash 14094 Σcsu 15446 ∏cprod 15664 𝟭cind 32027 reprcrepr 32637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-pm 8649 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-ico 13135 df-fz 13290 df-fzo 13433 df-seq 13772 df-exp 13833 df-hash 14095 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 df-sum 15447 df-prod 15665 df-ind 32028 df-repr 32638 |
This theorem is referenced by: circlemethnat 32670 |
Copyright terms: Public domain | W3C validator |