Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p9 Structured version   Visualization version   GIF version

Theorem aks4d1p9 42180
Description: Show that the order is bound by the squared binary logarithm. (Contributed by metakunt, 14-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p9.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p9.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p9.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p9.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
Assertion
Ref Expression
aks4d1p9 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝑁,𝑟   𝑅,𝑘   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem aks4d1p9
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12199 . . . . . . . . . 10 2 ∈ ℝ
21a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
3 2pos 12228 . . . . . . . . . 10 0 < 2
43a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
5 aks4d1p9.1 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘3))
6 eluzelz 12742 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
87zred 12577 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
9 0red 11115 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
10 3re 12205 . . . . . . . . . . 11 3 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℝ)
12 3pos 12230 . . . . . . . . . . 11 0 < 3
1312a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 3)
14 eluzle 12745 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
155, 14syl 17 . . . . . . . . . 10 (𝜑 → 3 ≤ 𝑁)
169, 11, 8, 13, 15ltletrd 11273 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
17 1red 11113 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
18 1lt2 12291 . . . . . . . . . . . 12 1 < 2
1918a1i 11 . . . . . . . . . . 11 (𝜑 → 1 < 2)
2017, 19ltned 11249 . . . . . . . . . 10 (𝜑 → 1 ≠ 2)
2120necomd 2983 . . . . . . . . 9 (𝜑 → 2 ≠ 1)
222, 4, 8, 16, 21relogbcld 42065 . . . . . . . 8 (𝜑 → (2 logb 𝑁) ∈ ℝ)
2322resqcld 14032 . . . . . . 7 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
24 aks4d1p9.2 . . . . . . . . . . . . 13 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
25 aks4d1p9.3 . . . . . . . . . . . . 13 𝐵 = (⌈‘((2 logb 𝑁)↑5))
26 aks4d1p9.4 . . . . . . . . . . . . 13 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
275, 24, 25, 26aks4d1p4 42171 . . . . . . . . . . . 12 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
2827simpld 494 . . . . . . . . . . 11 (𝜑𝑅 ∈ (1...𝐵))
29 elfznn 13453 . . . . . . . . . . 11 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
3028, 29syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ ℕ)
315, 24, 25, 26aks4d1p8 42179 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) = 1)
3230, 7, 313jca 1128 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1))
33 odzcl 16705 . . . . . . . . 9 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
3432, 33syl 17 . . . . . . . 8 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
3534nnzd 12495 . . . . . . 7 (𝜑 → ((od𝑅)‘𝑁) ∈ ℤ)
36 flge 13709 . . . . . . 7 ((((2 logb 𝑁)↑2) ∈ ℝ ∧ ((od𝑅)‘𝑁) ∈ ℤ) → (((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2) ↔ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))))
3723, 35, 36syl2anc 584 . . . . . 6 (𝜑 → (((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2) ↔ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))))
3837biimpd 229 . . . . 5 (𝜑 → (((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2) → ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))))
3938imp 406 . . . 4 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)))
4030nnzd 12495 . . . . . . . . 9 (𝜑𝑅 ∈ ℤ)
4140adantr 480 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅 ∈ ℤ)
427adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑁 ∈ ℤ)
4334nnnn0d 12442 . . . . . . . . . . 11 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ0)
4443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ∈ ℕ0)
4542, 44zexpcld 13994 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (𝑁↑((od𝑅)‘𝑁)) ∈ ℤ)
46 1zzd 12503 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 1 ∈ ℤ)
4745, 46zsubcld 12582 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∈ ℤ)
485, 25aks4d1lem1 42154 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 ∈ ℕ ∧ 9 < 𝐵))
4948simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℕ)
5049nnred 12140 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
5149nngt0d 12174 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐵)
522, 4, 50, 51, 21relogbcld 42065 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝐵) ∈ ℝ)
5352flcld 13702 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
54 2cnd 12203 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
559, 4gtned 11248 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
5654, 55, 213jca 1128 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1))
57 logb1 26706 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5856, 57syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 1) = 0)
59 2z 12504 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
6059a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℤ)
612leidd 11683 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 2)
62 0lt1 11639 . . . . . . . . . . . . . . . . . 18 0 < 1
6362a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 1)
6449nnge1d 12173 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝐵)
6560, 61, 17, 63, 50, 51, 64logblebd 42068 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 1) ≤ (2 logb 𝐵))
6658, 65eqbrtrrd 5113 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (2 logb 𝐵))
67 0zd 12480 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℤ)
68 flge 13709 . . . . . . . . . . . . . . . 16 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
6952, 67, 68syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
7066, 69mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
7153, 70jca 511 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
72 elnn0z 12481 . . . . . . . . . . . . 13 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
7371, 72sylibr 234 . . . . . . . . . . . 12 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
747, 73zexpcld 13994 . . . . . . . . . . 11 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
75 fzfid 13880 . . . . . . . . . . . 12 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
767adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
77 elfznn 13453 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
7877nnnn0d 12442 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ0)
7978adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
8076, 79zexpcld 13994 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
81 1zzd 12503 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
8280, 81zsubcld 12582 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
8375, 82fprodzcl 15861 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ)
8474, 83zmulcld 12583 . . . . . . . . . 10 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℤ)
8524a1i 11 . . . . . . . . . . 11 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
8685eleq1d 2816 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℤ ↔ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℤ))
8784, 86mpbird 257 . . . . . . . . 9 (𝜑𝐴 ∈ ℤ)
8887adantr 480 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝐴 ∈ ℤ)
89 iddvds 16180 . . . . . . . . . . 11 (((od𝑅)‘𝑁) ∈ ℤ → ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁))
9035, 89syl 17 . . . . . . . . . 10 (𝜑 → ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁))
91 odzdvds 16707 . . . . . . . . . . 11 (((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) ∧ ((od𝑅)‘𝑁) ∈ ℕ0) → (𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1) ↔ ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁)))
9232, 43, 91syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1) ↔ ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁)))
9390, 92mpbird 257 . . . . . . . . 9 (𝜑𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1))
9493adantr 480 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1))
9573adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9642, 95zexpcld 13994 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
97 fzfid 13880 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
9842adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
9977adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
10099nnnn0d 12442 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
10198, 100zexpcld 13994 . . . . . . . . . . . 12 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
102 1zzd 12503 . . . . . . . . . . . 12 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
103101, 102zsubcld 12582 . . . . . . . . . . 11 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
10497, 103fprodzcl 15861 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ)
105 fveq2 6822 . . . . . . . . . . . . 13 (𝑧 = ((od𝑅)‘𝑁) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) = ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)))
106105breq1d 5099 . . . . . . . . . . . 12 (𝑧 = ((od𝑅)‘𝑁) → (((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) ↔ ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘)))
107 ssidd 3953 . . . . . . . . . . . . . 14 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ⊆ (1...(⌊‘((2 logb 𝑁)↑2))))
1087adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
109 elfznn 13453 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑥 ∈ ℕ)
110109adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑥 ∈ ℕ)
111110nnnn0d 12442 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑥 ∈ ℕ0)
112108, 111zexpcld 13994 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑥) ∈ ℤ)
113 1zzd 12503 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
114112, 113zsubcld 12582 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑥) − 1) ∈ ℤ)
115114fmpttd 7048 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)):(1...(⌊‘((2 logb 𝑁)↑2)))⟶ℤ)
11675, 107, 115fprodfvdvdsd 16245 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘))
117116adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ∀𝑧 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘))
11822adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (2 logb 𝑁) ∈ ℝ)
119118resqcld 14032 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((2 logb 𝑁)↑2) ∈ ℝ)
120119flcld 13702 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (⌊‘((2 logb 𝑁)↑2)) ∈ ℤ)
12135adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ∈ ℤ)
12234nnge1d 12173 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ ((od𝑅)‘𝑁))
123122adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 1 ≤ ((od𝑅)‘𝑁))
124 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)))
12546, 120, 121, 123, 124elfzd 13415 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ∈ (1...(⌊‘((2 logb 𝑁)↑2))))
126106, 117, 125rspcdva 3573 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘))
127 eqidd 2732 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)) = (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)))
128 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑥 = ((od𝑅)‘𝑁)) → 𝑥 = ((od𝑅)‘𝑁))
129128oveq2d 7362 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑥 = ((od𝑅)‘𝑁)) → (𝑁𝑥) = (𝑁↑((od𝑅)‘𝑁)))
130129oveq1d 7361 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑥 = ((od𝑅)‘𝑁)) → ((𝑁𝑥) − 1) = ((𝑁↑((od𝑅)‘𝑁)) − 1))
131127, 130, 125, 47fvmptd 6936 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) = ((𝑁↑((od𝑅)‘𝑁)) − 1))
132 eqidd 2732 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)) = (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)))
133 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘)
134133oveq2d 7362 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) ∧ 𝑥 = 𝑘) → (𝑁𝑥) = (𝑁𝑘))
135134oveq1d 7361 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) ∧ 𝑥 = 𝑘) → ((𝑁𝑥) − 1) = ((𝑁𝑘) − 1))
136 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))))
137132, 135, 136, 103fvmptd 6936 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) = ((𝑁𝑘) − 1))
138137prodeq2dv 15829 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) = ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
139131, 138breq12d 5102 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) ↔ ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
140126, 139mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
14147, 96, 104, 140dvdsmultr2d 16210 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
14224a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
143141, 142breqtrrd 5117 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ 𝐴)
14441, 47, 88, 94, 143dvdstrd 16206 . . . . . . 7 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅𝐴)
145144ex 412 . . . . . 6 (𝜑 → (((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)) → 𝑅𝐴))
146145adantr 480 . . . . 5 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → (((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)) → 𝑅𝐴))
147146imp 406 . . . 4 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅𝐴)
14839, 147mpdan 687 . . 3 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → 𝑅𝐴)
14927simprd 495 . . . 4 (𝜑 → ¬ 𝑅𝐴)
150149adantr 480 . . 3 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → ¬ 𝑅𝐴)
151148, 150pm2.65da 816 . 2 (𝜑 → ¬ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2))
15234nnred 12140 . . 3 (𝜑 → ((od𝑅)‘𝑁) ∈ ℝ)
15323, 152ltnled 11260 . 2 (𝜑 → (((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁) ↔ ¬ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)))
154151, 153mpbird 257 1 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  infcinf 9325  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147  cmin 11344  cn 12125  2c2 12180  3c3 12181  5c5 12183  9c9 12187  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  cfl 13694  cceil 13695  cexp 13968  cprod 15810  cdvds 16163   gcd cgcd 16405  odcodz 16674   logb clogb 26701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-symdif 4200  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-ceil 13697  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-lcm 16501  df-lcmf 16502  df-prm 16583  df-odz 16676  df-phi 16677  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-ibl 25550  df-itg 25551  df-0p 25598  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493  df-logb 26702
This theorem is referenced by:  aks4d1  42181
  Copyright terms: Public domain W3C validator