Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p9 Structured version   Visualization version   GIF version

Theorem aks4d1p9 42070
Description: Show that the order is bound by the squared binary logarithm. (Contributed by metakunt, 14-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p9.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p9.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p9.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p9.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
Assertion
Ref Expression
aks4d1p9 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝑁,𝑟   𝑅,𝑘   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem aks4d1p9
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12238 . . . . . . . . . 10 2 ∈ ℝ
21a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
3 2pos 12267 . . . . . . . . . 10 0 < 2
43a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
5 aks4d1p9.1 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘3))
6 eluzelz 12781 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
87zred 12616 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
9 0red 11155 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
10 3re 12244 . . . . . . . . . . 11 3 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℝ)
12 3pos 12269 . . . . . . . . . . 11 0 < 3
1312a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 3)
14 eluzle 12784 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
155, 14syl 17 . . . . . . . . . 10 (𝜑 → 3 ≤ 𝑁)
169, 11, 8, 13, 15ltletrd 11312 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
17 1red 11153 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
18 1lt2 12330 . . . . . . . . . . . 12 1 < 2
1918a1i 11 . . . . . . . . . . 11 (𝜑 → 1 < 2)
2017, 19ltned 11288 . . . . . . . . . 10 (𝜑 → 1 ≠ 2)
2120necomd 2980 . . . . . . . . 9 (𝜑 → 2 ≠ 1)
222, 4, 8, 16, 21relogbcld 41955 . . . . . . . 8 (𝜑 → (2 logb 𝑁) ∈ ℝ)
2322resqcld 14068 . . . . . . 7 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
24 aks4d1p9.2 . . . . . . . . . . . . 13 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
25 aks4d1p9.3 . . . . . . . . . . . . 13 𝐵 = (⌈‘((2 logb 𝑁)↑5))
26 aks4d1p9.4 . . . . . . . . . . . . 13 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
275, 24, 25, 26aks4d1p4 42061 . . . . . . . . . . . 12 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
2827simpld 494 . . . . . . . . . . 11 (𝜑𝑅 ∈ (1...𝐵))
29 elfznn 13492 . . . . . . . . . . 11 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
3028, 29syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ ℕ)
315, 24, 25, 26aks4d1p8 42069 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) = 1)
3230, 7, 313jca 1128 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1))
33 odzcl 16741 . . . . . . . . 9 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
3432, 33syl 17 . . . . . . . 8 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
3534nnzd 12534 . . . . . . 7 (𝜑 → ((od𝑅)‘𝑁) ∈ ℤ)
36 flge 13745 . . . . . . 7 ((((2 logb 𝑁)↑2) ∈ ℝ ∧ ((od𝑅)‘𝑁) ∈ ℤ) → (((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2) ↔ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))))
3723, 35, 36syl2anc 584 . . . . . 6 (𝜑 → (((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2) ↔ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))))
3837biimpd 229 . . . . 5 (𝜑 → (((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2) → ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))))
3938imp 406 . . . 4 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)))
4030nnzd 12534 . . . . . . . . 9 (𝜑𝑅 ∈ ℤ)
4140adantr 480 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅 ∈ ℤ)
427adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑁 ∈ ℤ)
4334nnnn0d 12481 . . . . . . . . . . 11 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ0)
4443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ∈ ℕ0)
4542, 44zexpcld 14030 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (𝑁↑((od𝑅)‘𝑁)) ∈ ℤ)
46 1zzd 12542 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 1 ∈ ℤ)
4745, 46zsubcld 12621 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∈ ℤ)
485, 25aks4d1lem1 42044 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 ∈ ℕ ∧ 9 < 𝐵))
4948simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℕ)
5049nnred 12179 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
5149nngt0d 12213 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐵)
522, 4, 50, 51, 21relogbcld 41955 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝐵) ∈ ℝ)
5352flcld 13738 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
54 2cnd 12242 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
559, 4gtned 11287 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
5654, 55, 213jca 1128 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1))
57 logb1 26713 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5856, 57syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 1) = 0)
59 2z 12543 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
6059a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℤ)
612leidd 11722 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 2)
62 0lt1 11678 . . . . . . . . . . . . . . . . . 18 0 < 1
6362a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 1)
6449nnge1d 12212 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝐵)
6560, 61, 17, 63, 50, 51, 64logblebd 41958 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 1) ≤ (2 logb 𝐵))
6658, 65eqbrtrrd 5126 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (2 logb 𝐵))
67 0zd 12519 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℤ)
68 flge 13745 . . . . . . . . . . . . . . . 16 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
6952, 67, 68syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
7066, 69mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
7153, 70jca 511 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
72 elnn0z 12520 . . . . . . . . . . . . 13 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
7371, 72sylibr 234 . . . . . . . . . . . 12 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
747, 73zexpcld 14030 . . . . . . . . . . 11 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
75 fzfid 13916 . . . . . . . . . . . 12 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
767adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
77 elfznn 13492 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
7877nnnn0d 12481 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ0)
7978adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
8076, 79zexpcld 14030 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
81 1zzd 12542 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
8280, 81zsubcld 12621 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
8375, 82fprodzcl 15897 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ)
8474, 83zmulcld 12622 . . . . . . . . . 10 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℤ)
8524a1i 11 . . . . . . . . . . 11 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
8685eleq1d 2813 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℤ ↔ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℤ))
8784, 86mpbird 257 . . . . . . . . 9 (𝜑𝐴 ∈ ℤ)
8887adantr 480 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝐴 ∈ ℤ)
89 iddvds 16216 . . . . . . . . . . 11 (((od𝑅)‘𝑁) ∈ ℤ → ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁))
9035, 89syl 17 . . . . . . . . . 10 (𝜑 → ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁))
91 odzdvds 16743 . . . . . . . . . . 11 (((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) ∧ ((od𝑅)‘𝑁) ∈ ℕ0) → (𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1) ↔ ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁)))
9232, 43, 91syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1) ↔ ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁)))
9390, 92mpbird 257 . . . . . . . . 9 (𝜑𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1))
9493adantr 480 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1))
9573adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9642, 95zexpcld 14030 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
97 fzfid 13916 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
9842adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
9977adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
10099nnnn0d 12481 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
10198, 100zexpcld 14030 . . . . . . . . . . . 12 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
102 1zzd 12542 . . . . . . . . . . . 12 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
103101, 102zsubcld 12621 . . . . . . . . . . 11 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
10497, 103fprodzcl 15897 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ)
105 fveq2 6840 . . . . . . . . . . . . 13 (𝑧 = ((od𝑅)‘𝑁) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) = ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)))
106105breq1d 5112 . . . . . . . . . . . 12 (𝑧 = ((od𝑅)‘𝑁) → (((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) ↔ ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘)))
107 ssidd 3967 . . . . . . . . . . . . . 14 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ⊆ (1...(⌊‘((2 logb 𝑁)↑2))))
1087adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
109 elfznn 13492 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑥 ∈ ℕ)
110109adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑥 ∈ ℕ)
111110nnnn0d 12481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑥 ∈ ℕ0)
112108, 111zexpcld 14030 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑥) ∈ ℤ)
113 1zzd 12542 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
114112, 113zsubcld 12621 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑥) − 1) ∈ ℤ)
115114fmpttd 7069 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)):(1...(⌊‘((2 logb 𝑁)↑2)))⟶ℤ)
11675, 107, 115fprodfvdvdsd 16281 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘))
117116adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ∀𝑧 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘))
11822adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (2 logb 𝑁) ∈ ℝ)
119118resqcld 14068 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((2 logb 𝑁)↑2) ∈ ℝ)
120119flcld 13738 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (⌊‘((2 logb 𝑁)↑2)) ∈ ℤ)
12135adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ∈ ℤ)
12234nnge1d 12212 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ ((od𝑅)‘𝑁))
123122adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 1 ≤ ((od𝑅)‘𝑁))
124 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)))
12546, 120, 121, 123, 124elfzd 13454 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ∈ (1...(⌊‘((2 logb 𝑁)↑2))))
126106, 117, 125rspcdva 3586 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘))
127 eqidd 2730 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)) = (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)))
128 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑥 = ((od𝑅)‘𝑁)) → 𝑥 = ((od𝑅)‘𝑁))
129128oveq2d 7385 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑥 = ((od𝑅)‘𝑁)) → (𝑁𝑥) = (𝑁↑((od𝑅)‘𝑁)))
130129oveq1d 7384 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑥 = ((od𝑅)‘𝑁)) → ((𝑁𝑥) − 1) = ((𝑁↑((od𝑅)‘𝑁)) − 1))
131127, 130, 125, 47fvmptd 6957 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) = ((𝑁↑((od𝑅)‘𝑁)) − 1))
132 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)) = (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)))
133 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘)
134133oveq2d 7385 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) ∧ 𝑥 = 𝑘) → (𝑁𝑥) = (𝑁𝑘))
135134oveq1d 7384 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) ∧ 𝑥 = 𝑘) → ((𝑁𝑥) − 1) = ((𝑁𝑘) − 1))
136 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))))
137132, 135, 136, 103fvmptd 6957 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) = ((𝑁𝑘) − 1))
138137prodeq2dv 15865 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) = ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
139131, 138breq12d 5115 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) ↔ ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
140126, 139mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
14147, 96, 104, 140dvdsmultr2d 16246 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
14224a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
143141, 142breqtrrd 5130 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ 𝐴)
14441, 47, 88, 94, 143dvdstrd 16242 . . . . . . 7 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅𝐴)
145144ex 412 . . . . . 6 (𝜑 → (((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)) → 𝑅𝐴))
146145adantr 480 . . . . 5 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → (((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)) → 𝑅𝐴))
147146imp 406 . . . 4 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅𝐴)
14839, 147mpdan 687 . . 3 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → 𝑅𝐴)
14927simprd 495 . . . 4 (𝜑 → ¬ 𝑅𝐴)
150149adantr 480 . . 3 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → ¬ 𝑅𝐴)
151148, 150pm2.65da 816 . 2 (𝜑 → ¬ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2))
15234nnred 12179 . . 3 (𝜑 → ((od𝑅)‘𝑁) ∈ ℝ)
15323, 152ltnled 11299 . 2 (𝜑 → (((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁) ↔ ¬ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)))
154151, 153mpbird 257 1 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  infcinf 9368  cc 11044  cr 11045  0cc0 11046  1c1 11047   · cmul 11051   < clt 11186  cle 11187  cmin 11383  cn 12164  2c2 12219  3c3 12220  5c5 12222  9c9 12226  0cn0 12420  cz 12507  cuz 12771  ...cfz 13446  cfl 13730  cceil 13731  cexp 14004  cprod 15846  cdvds 16199   gcd cgcd 16441  odcodz 16710   logb clogb 26708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cc 10366  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-symdif 4212  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9832  df-card 9870  df-acn 9873  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-xnn0 12494  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-ceil 13733  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-prod 15847  df-ef 16010  df-e 16011  df-sin 16012  df-cos 16013  df-pi 16015  df-dvds 16200  df-gcd 16442  df-lcm 16537  df-lcmf 16538  df-prm 16619  df-odz 16712  df-phi 16713  df-pc 16785  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-cmp 23308  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-ovol 25399  df-vol 25400  df-mbf 25554  df-itg1 25555  df-itg2 25556  df-ibl 25557  df-itg 25558  df-0p 25605  df-limc 25801  df-dv 25802  df-log 26499  df-cxp 26500  df-logb 26709
This theorem is referenced by:  aks4d1  42071
  Copyright terms: Public domain W3C validator