Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p9 Structured version   Visualization version   GIF version

Theorem aks4d1p9 42101
Description: Show that the order is bound by the squared binary logarithm. (Contributed by metakunt, 14-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p9.1 (𝜑𝑁 ∈ (ℤ‘3))
aks4d1p9.2 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
aks4d1p9.3 𝐵 = (⌈‘((2 logb 𝑁)↑5))
aks4d1p9.4 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
Assertion
Ref Expression
aks4d1p9 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑘,𝑁   𝑁,𝑟   𝑅,𝑘   𝑅,𝑟   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem aks4d1p9
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 12314 . . . . . . . . . 10 2 ∈ ℝ
21a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
3 2pos 12343 . . . . . . . . . 10 0 < 2
43a1i 11 . . . . . . . . 9 (𝜑 → 0 < 2)
5 aks4d1p9.1 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘3))
6 eluzelz 12862 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
75, 6syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
87zred 12697 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
9 0red 11238 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
10 3re 12320 . . . . . . . . . . 11 3 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℝ)
12 3pos 12345 . . . . . . . . . . 11 0 < 3
1312a1i 11 . . . . . . . . . 10 (𝜑 → 0 < 3)
14 eluzle 12865 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
155, 14syl 17 . . . . . . . . . 10 (𝜑 → 3 ≤ 𝑁)
169, 11, 8, 13, 15ltletrd 11395 . . . . . . . . 9 (𝜑 → 0 < 𝑁)
17 1red 11236 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
18 1lt2 12411 . . . . . . . . . . . 12 1 < 2
1918a1i 11 . . . . . . . . . . 11 (𝜑 → 1 < 2)
2017, 19ltned 11371 . . . . . . . . . 10 (𝜑 → 1 ≠ 2)
2120necomd 2987 . . . . . . . . 9 (𝜑 → 2 ≠ 1)
222, 4, 8, 16, 21relogbcld 41986 . . . . . . . 8 (𝜑 → (2 logb 𝑁) ∈ ℝ)
2322resqcld 14143 . . . . . . 7 (𝜑 → ((2 logb 𝑁)↑2) ∈ ℝ)
24 aks4d1p9.2 . . . . . . . . . . . . 13 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
25 aks4d1p9.3 . . . . . . . . . . . . 13 𝐵 = (⌈‘((2 logb 𝑁)↑5))
26 aks4d1p9.4 . . . . . . . . . . . . 13 𝑅 = inf({𝑟 ∈ (1...𝐵) ∣ ¬ 𝑟𝐴}, ℝ, < )
275, 24, 25, 26aks4d1p4 42092 . . . . . . . . . . . 12 (𝜑 → (𝑅 ∈ (1...𝐵) ∧ ¬ 𝑅𝐴))
2827simpld 494 . . . . . . . . . . 11 (𝜑𝑅 ∈ (1...𝐵))
29 elfznn 13570 . . . . . . . . . . 11 (𝑅 ∈ (1...𝐵) → 𝑅 ∈ ℕ)
3028, 29syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ ℕ)
315, 24, 25, 26aks4d1p8 42100 . . . . . . . . . 10 (𝜑 → (𝑁 gcd 𝑅) = 1)
3230, 7, 313jca 1128 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1))
33 odzcl 16813 . . . . . . . . 9 ((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) → ((od𝑅)‘𝑁) ∈ ℕ)
3432, 33syl 17 . . . . . . . 8 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ)
3534nnzd 12615 . . . . . . 7 (𝜑 → ((od𝑅)‘𝑁) ∈ ℤ)
36 flge 13822 . . . . . . 7 ((((2 logb 𝑁)↑2) ∈ ℝ ∧ ((od𝑅)‘𝑁) ∈ ℤ) → (((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2) ↔ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))))
3723, 35, 36syl2anc 584 . . . . . 6 (𝜑 → (((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2) ↔ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))))
3837biimpd 229 . . . . 5 (𝜑 → (((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2) → ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))))
3938imp 406 . . . 4 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)))
4030nnzd 12615 . . . . . . . . 9 (𝜑𝑅 ∈ ℤ)
4140adantr 480 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅 ∈ ℤ)
427adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑁 ∈ ℤ)
4334nnnn0d 12562 . . . . . . . . . . 11 (𝜑 → ((od𝑅)‘𝑁) ∈ ℕ0)
4443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ∈ ℕ0)
4542, 44zexpcld 14105 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (𝑁↑((od𝑅)‘𝑁)) ∈ ℤ)
46 1zzd 12623 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 1 ∈ ℤ)
4745, 46zsubcld 12702 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∈ ℤ)
485, 25aks4d1lem1 42075 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵 ∈ ℕ ∧ 9 < 𝐵))
4948simpld 494 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ ℕ)
5049nnred 12255 . . . . . . . . . . . . . . . 16 (𝜑𝐵 ∈ ℝ)
5149nngt0d 12289 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝐵)
522, 4, 50, 51, 21relogbcld 41986 . . . . . . . . . . . . . . 15 (𝜑 → (2 logb 𝐵) ∈ ℝ)
5352flcld 13815 . . . . . . . . . . . . . 14 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℤ)
54 2cnd 12318 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ∈ ℂ)
559, 4gtned 11370 . . . . . . . . . . . . . . . . . 18 (𝜑 → 2 ≠ 0)
5654, 55, 213jca 1128 . . . . . . . . . . . . . . . . 17 (𝜑 → (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1))
57 logb1 26731 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
5856, 57syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 1) = 0)
59 2z 12624 . . . . . . . . . . . . . . . . . 18 2 ∈ ℤ
6059a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℤ)
612leidd 11803 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ≤ 2)
62 0lt1 11759 . . . . . . . . . . . . . . . . . 18 0 < 1
6362a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 1)
6449nnge1d 12288 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ≤ 𝐵)
6560, 61, 17, 63, 50, 51, 64logblebd 41989 . . . . . . . . . . . . . . . 16 (𝜑 → (2 logb 1) ≤ (2 logb 𝐵))
6658, 65eqbrtrrd 5143 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (2 logb 𝐵))
67 0zd 12600 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℤ)
68 flge 13822 . . . . . . . . . . . . . . . 16 (((2 logb 𝐵) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
6952, 67, 68syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (2 logb 𝐵) ↔ 0 ≤ (⌊‘(2 logb 𝐵))))
7066, 69mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (⌊‘(2 logb 𝐵)))
7153, 70jca 511 . . . . . . . . . . . . 13 (𝜑 → ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
72 elnn0z 12601 . . . . . . . . . . . . 13 ((⌊‘(2 logb 𝐵)) ∈ ℕ0 ↔ ((⌊‘(2 logb 𝐵)) ∈ ℤ ∧ 0 ≤ (⌊‘(2 logb 𝐵))))
7371, 72sylibr 234 . . . . . . . . . . . 12 (𝜑 → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
747, 73zexpcld 14105 . . . . . . . . . . 11 (𝜑 → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
75 fzfid 13991 . . . . . . . . . . . 12 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
767adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
77 elfznn 13570 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ)
7877nnnn0d 12562 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑘 ∈ ℕ0)
7978adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
8076, 79zexpcld 14105 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
81 1zzd 12623 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
8280, 81zsubcld 12702 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
8375, 82fprodzcl 15970 . . . . . . . . . . 11 (𝜑 → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ)
8474, 83zmulcld 12703 . . . . . . . . . 10 (𝜑 → ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℤ)
8524a1i 11 . . . . . . . . . . 11 (𝜑𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
8685eleq1d 2819 . . . . . . . . . 10 (𝜑 → (𝐴 ∈ ℤ ↔ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)) ∈ ℤ))
8784, 86mpbird 257 . . . . . . . . 9 (𝜑𝐴 ∈ ℤ)
8887adantr 480 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝐴 ∈ ℤ)
89 iddvds 16289 . . . . . . . . . . 11 (((od𝑅)‘𝑁) ∈ ℤ → ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁))
9035, 89syl 17 . . . . . . . . . 10 (𝜑 → ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁))
91 odzdvds 16815 . . . . . . . . . . 11 (((𝑅 ∈ ℕ ∧ 𝑁 ∈ ℤ ∧ (𝑁 gcd 𝑅) = 1) ∧ ((od𝑅)‘𝑁) ∈ ℕ0) → (𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1) ↔ ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁)))
9232, 43, 91syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1) ↔ ((od𝑅)‘𝑁) ∥ ((od𝑅)‘𝑁)))
9390, 92mpbird 257 . . . . . . . . 9 (𝜑𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1))
9493adantr 480 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅 ∥ ((𝑁↑((od𝑅)‘𝑁)) − 1))
9573adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (⌊‘(2 logb 𝐵)) ∈ ℕ0)
9642, 95zexpcld 14105 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (𝑁↑(⌊‘(2 logb 𝐵))) ∈ ℤ)
97 fzfid 13991 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (1...(⌊‘((2 logb 𝑁)↑2))) ∈ Fin)
9842adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
9977adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ)
10099nnnn0d 12562 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ ℕ0)
10198, 100zexpcld 14105 . . . . . . . . . . . 12 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑘) ∈ ℤ)
102 1zzd 12623 . . . . . . . . . . . 12 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
103101, 102zsubcld 12702 . . . . . . . . . . 11 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑘) − 1) ∈ ℤ)
10497, 103fprodzcl 15970 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1) ∈ ℤ)
105 fveq2 6876 . . . . . . . . . . . . 13 (𝑧 = ((od𝑅)‘𝑁) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) = ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)))
106105breq1d 5129 . . . . . . . . . . . 12 (𝑧 = ((od𝑅)‘𝑁) → (((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) ↔ ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘)))
107 ssidd 3982 . . . . . . . . . . . . . 14 (𝜑 → (1...(⌊‘((2 logb 𝑁)↑2))) ⊆ (1...(⌊‘((2 logb 𝑁)↑2))))
1087adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑁 ∈ ℤ)
109 elfznn 13570 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) → 𝑥 ∈ ℕ)
110109adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑥 ∈ ℕ)
111110nnnn0d 12562 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑥 ∈ ℕ0)
112108, 111zexpcld 14105 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑁𝑥) ∈ ℤ)
113 1zzd 12623 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 1 ∈ ℤ)
114112, 113zsubcld 12702 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑁𝑥) − 1) ∈ ℤ)
115114fmpttd 7105 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)):(1...(⌊‘((2 logb 𝑁)↑2)))⟶ℤ)
11675, 107, 115fprodfvdvdsd 16353 . . . . . . . . . . . . 13 (𝜑 → ∀𝑧 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘))
117116adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ∀𝑧 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑧) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘))
11822adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (2 logb 𝑁) ∈ ℝ)
119118resqcld 14143 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((2 logb 𝑁)↑2) ∈ ℝ)
120119flcld 13815 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (⌊‘((2 logb 𝑁)↑2)) ∈ ℤ)
12135adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ∈ ℤ)
12234nnge1d 12288 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ ((od𝑅)‘𝑁))
123122adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 1 ≤ ((od𝑅)‘𝑁))
124 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)))
12546, 120, 121, 123, 124elfzd 13532 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((od𝑅)‘𝑁) ∈ (1...(⌊‘((2 logb 𝑁)↑2))))
126106, 117, 125rspcdva 3602 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘))
127 eqidd 2736 . . . . . . . . . . . . 13 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)) = (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)))
128 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑥 = ((od𝑅)‘𝑁)) → 𝑥 = ((od𝑅)‘𝑁))
129128oveq2d 7421 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑥 = ((od𝑅)‘𝑁)) → (𝑁𝑥) = (𝑁↑((od𝑅)‘𝑁)))
130129oveq1d 7420 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑥 = ((od𝑅)‘𝑁)) → ((𝑁𝑥) − 1) = ((𝑁↑((od𝑅)‘𝑁)) − 1))
131127, 130, 125, 47fvmptd 6993 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) = ((𝑁↑((od𝑅)‘𝑁)) − 1))
132 eqidd 2736 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)) = (𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1)))
133 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘)
134133oveq2d 7421 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) ∧ 𝑥 = 𝑘) → (𝑁𝑥) = (𝑁𝑘))
135134oveq1d 7420 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) ∧ 𝑥 = 𝑘) → ((𝑁𝑥) − 1) = ((𝑁𝑘) − 1))
136 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2))))
137132, 135, 136, 103fvmptd 6993 . . . . . . . . . . . . 13 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) ∧ 𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))) → ((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) = ((𝑁𝑘) − 1))
138137prodeq2dv 15938 . . . . . . . . . . . 12 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) = ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
139131, 138breq12d 5132 . . . . . . . . . . 11 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → (((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘((od𝑅)‘𝑁)) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑥 ∈ (1...(⌊‘((2 logb 𝑁)↑2))) ↦ ((𝑁𝑥) − 1))‘𝑘) ↔ ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
140126, 139mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1))
14147, 96, 104, 140dvdsmultr2d 16318 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
14224a1i 11 . . . . . . . . 9 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝐴 = ((𝑁↑(⌊‘(2 logb 𝐵))) · ∏𝑘 ∈ (1...(⌊‘((2 logb 𝑁)↑2)))((𝑁𝑘) − 1)))
143141, 142breqtrrd 5147 . . . . . . . 8 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → ((𝑁↑((od𝑅)‘𝑁)) − 1) ∥ 𝐴)
14441, 47, 88, 94, 143dvdstrd 16314 . . . . . . 7 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅𝐴)
145144ex 412 . . . . . 6 (𝜑 → (((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)) → 𝑅𝐴))
146145adantr 480 . . . . 5 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → (((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2)) → 𝑅𝐴))
147146imp 406 . . . 4 (((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) ∧ ((od𝑅)‘𝑁) ≤ (⌊‘((2 logb 𝑁)↑2))) → 𝑅𝐴)
14839, 147mpdan 687 . . 3 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → 𝑅𝐴)
14927simprd 495 . . . 4 (𝜑 → ¬ 𝑅𝐴)
150149adantr 480 . . 3 ((𝜑 ∧ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)) → ¬ 𝑅𝐴)
151148, 150pm2.65da 816 . 2 (𝜑 → ¬ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2))
15234nnred 12255 . . 3 (𝜑 → ((od𝑅)‘𝑁) ∈ ℝ)
15323, 152ltnled 11382 . 2 (𝜑 → (((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁) ↔ ¬ ((od𝑅)‘𝑁) ≤ ((2 logb 𝑁)↑2)))
154151, 153mpbird 257 1 (𝜑 → ((2 logb 𝑁)↑2) < ((od𝑅)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  infcinf 9453  cc 11127  cr 11128  0cc0 11129  1c1 11130   · cmul 11134   < clt 11269  cle 11270  cmin 11466  cn 12240  2c2 12295  3c3 12296  5c5 12298  9c9 12302  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  cfl 13807  cceil 13808  cexp 14079  cprod 15919  cdvds 16272   gcd cgcd 16513  odcodz 16782   logb clogb 26726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-symdif 4228  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-ceil 13810  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-ef 16083  df-e 16084  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-lcm 16609  df-lcmf 16610  df-prm 16691  df-odz 16784  df-phi 16785  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-ovol 25417  df-vol 25418  df-mbf 25572  df-itg1 25573  df-itg2 25574  df-ibl 25575  df-itg 25576  df-0p 25623  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518  df-logb 26727
This theorem is referenced by:  aks4d1  42102
  Copyright terms: Public domain W3C validator