MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absef Structured version   Visualization version   GIF version

Theorem absef 16113
Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.)
Assertion
Ref Expression
absef (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴)))

Proof of Theorem absef
StepHypRef Expression
1 replim 15030 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21fveq2d 6835 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
3 recl 15024 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 11151 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5 ax-icn 11076 . . . . . . 7 i ∈ ℂ
6 imcl 15025 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76recnd 11151 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 11101 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
95, 7, 8sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
10 efadd 16008 . . . . . 6 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))
114, 9, 10syl2anc 584 . . . . 5 (𝐴 ∈ ℂ → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))
122, 11eqtrd 2768 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))
1312fveq2d 6835 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))))
143reefcld 16002 . . . . 5 (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℝ)
1514recnd 11151 . . . 4 (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℂ)
16 efcl 15996 . . . . 5 ((i · (ℑ‘𝐴)) ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ)
179, 16syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ)
1815, 17absmuld 15371 . . 3 (𝐴 ∈ ℂ → (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴))))))
19 absefi 16112 . . . . 5 ((ℑ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1)
206, 19syl 17 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1)
2120oveq2d 7371 . . 3 (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · 1))
2213, 18, 213eqtrd 2772 . 2 (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = ((abs‘(exp‘(ℜ‘𝐴))) · 1))
2315abscld 15353 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℝ)
2423recnd 11151 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℂ)
2524mulridd 11140 . 2 (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · 1) = (abs‘(exp‘(ℜ‘𝐴))))
26 efgt0 16019 . . . . 5 ((ℜ‘𝐴) ∈ ℝ → 0 < (exp‘(ℜ‘𝐴)))
273, 26syl 17 . . . 4 (𝐴 ∈ ℂ → 0 < (exp‘(ℜ‘𝐴)))
28 0re 11125 . . . . 5 0 ∈ ℝ
29 ltle 11212 . . . . 5 ((0 ∈ ℝ ∧ (exp‘(ℜ‘𝐴)) ∈ ℝ) → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴))))
3028, 14, 29sylancr 587 . . . 4 (𝐴 ∈ ℂ → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴))))
3127, 30mpd 15 . . 3 (𝐴 ∈ ℂ → 0 ≤ (exp‘(ℜ‘𝐴)))
3214, 31absidd 15337 . 2 (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) = (exp‘(ℜ‘𝐴)))
3322, 25, 323eqtrd 2772 1 (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018  ici 11019   + caddc 11020   · cmul 11022   < clt 11157  cle 11158  cre 15011  cim 15012  abscabs 15148  expce 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-ico 13258  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984
This theorem is referenced by:  absefib  16114  eff1olem  26504  relog  26553  abscxp  26648  abscxp2  26649  abscxpbnd  26710  zetacvg  26972
  Copyright terms: Public domain W3C validator