MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  absef Structured version   Visualization version   GIF version

Theorem absef 15904
Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.)
Assertion
Ref Expression
absef (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴)))

Proof of Theorem absef
StepHypRef Expression
1 replim 14825 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21fveq2d 6775 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
3 recl 14819 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 11004 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5 ax-icn 10931 . . . . . . 7 i ∈ ℂ
6 imcl 14820 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76recnd 11004 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 10956 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
95, 7, 8sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
10 efadd 15801 . . . . . 6 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))
114, 9, 10syl2anc 584 . . . . 5 (𝐴 ∈ ℂ → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))
122, 11eqtrd 2780 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))
1312fveq2d 6775 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))))
143reefcld 15795 . . . . 5 (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℝ)
1514recnd 11004 . . . 4 (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℂ)
16 efcl 15790 . . . . 5 ((i · (ℑ‘𝐴)) ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ)
179, 16syl 17 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ)
1815, 17absmuld 15164 . . 3 (𝐴 ∈ ℂ → (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴))))))
19 absefi 15903 . . . . 5 ((ℑ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1)
206, 19syl 17 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1)
2120oveq2d 7287 . . 3 (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · 1))
2213, 18, 213eqtrd 2784 . 2 (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = ((abs‘(exp‘(ℜ‘𝐴))) · 1))
2315abscld 15146 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℝ)
2423recnd 11004 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℂ)
2524mulid1d 10993 . 2 (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · 1) = (abs‘(exp‘(ℜ‘𝐴))))
26 efgt0 15810 . . . . 5 ((ℜ‘𝐴) ∈ ℝ → 0 < (exp‘(ℜ‘𝐴)))
273, 26syl 17 . . . 4 (𝐴 ∈ ℂ → 0 < (exp‘(ℜ‘𝐴)))
28 0re 10978 . . . . 5 0 ∈ ℝ
29 ltle 11064 . . . . 5 ((0 ∈ ℝ ∧ (exp‘(ℜ‘𝐴)) ∈ ℝ) → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴))))
3028, 14, 29sylancr 587 . . . 4 (𝐴 ∈ ℂ → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴))))
3127, 30mpd 15 . . 3 (𝐴 ∈ ℂ → 0 ≤ (exp‘(ℜ‘𝐴)))
3214, 31absidd 15132 . 2 (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) = (exp‘(ℜ‘𝐴)))
3322, 25, 323eqtrd 2784 1 (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873  ici 10874   + caddc 10875   · cmul 10877   < clt 11010  cle 11011  cre 14806  cim 14807  abscabs 14943  expce 15769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-ico 13084  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-sin 15777  df-cos 15778
This theorem is referenced by:  absefib  15905  eff1olem  25702  relog  25750  abscxp  25845  abscxp2  25846  abscxpbnd  25904  zetacvg  26162
  Copyright terms: Public domain W3C validator