| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > absef | Structured version Visualization version GIF version | ||
| Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.) |
| Ref | Expression |
|---|---|
| absef | ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim 15030 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
| 2 | 1 | fveq2d 6835 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴))))) |
| 3 | recl 15024 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 4 | 3 | recnd 11151 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
| 5 | ax-icn 11076 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 6 | imcl 15025 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
| 7 | 6 | recnd 11151 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
| 8 | mulcl 11101 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
| 9 | 5, 7, 8 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
| 10 | efadd 16008 | . . . . . 6 ⊢ (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) | |
| 11 | 4, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) |
| 12 | 2, 11 | eqtrd 2768 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) |
| 13 | 12 | fveq2d 6835 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))) |
| 14 | 3 | reefcld 16002 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℝ) |
| 15 | 14 | recnd 11151 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℂ) |
| 16 | efcl 15996 | . . . . 5 ⊢ ((i · (ℑ‘𝐴)) ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ) | |
| 17 | 9, 16 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ) |
| 18 | 15, 17 | absmuld 15371 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴)))))) |
| 19 | absefi 16112 | . . . . 5 ⊢ ((ℑ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1) | |
| 20 | 6, 19 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1) |
| 21 | 20 | oveq2d 7371 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · 1)) |
| 22 | 13, 18, 21 | 3eqtrd 2772 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = ((abs‘(exp‘(ℜ‘𝐴))) · 1)) |
| 23 | 15 | abscld 15353 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℝ) |
| 24 | 23 | recnd 11151 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℂ) |
| 25 | 24 | mulridd 11140 | . 2 ⊢ (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · 1) = (abs‘(exp‘(ℜ‘𝐴)))) |
| 26 | efgt0 16019 | . . . . 5 ⊢ ((ℜ‘𝐴) ∈ ℝ → 0 < (exp‘(ℜ‘𝐴))) | |
| 27 | 3, 26 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → 0 < (exp‘(ℜ‘𝐴))) |
| 28 | 0re 11125 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 29 | ltle 11212 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ (exp‘(ℜ‘𝐴)) ∈ ℝ) → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴)))) | |
| 30 | 28, 14, 29 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴)))) |
| 31 | 27, 30 | mpd 15 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ≤ (exp‘(ℜ‘𝐴))) |
| 32 | 14, 31 | absidd 15337 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) = (exp‘(ℜ‘𝐴))) |
| 33 | 22, 25, 32 | 3eqtrd 2772 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ℝcr 11016 0cc0 11017 1c1 11018 ici 11019 + caddc 11020 · cmul 11022 < clt 11157 ≤ cle 11158 ℜcre 15011 ℑcim 15012 abscabs 15148 expce 15975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-ico 13258 df-fz 13415 df-fzo 13562 df-fl 13703 df-seq 13916 df-exp 13976 df-fac 14188 df-bc 14217 df-hash 14245 df-shft 14981 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-limsup 15385 df-clim 15402 df-rlim 15403 df-sum 15601 df-ef 15981 df-sin 15983 df-cos 15984 |
| This theorem is referenced by: absefib 16114 eff1olem 26504 relog 26553 abscxp 26648 abscxp2 26649 abscxpbnd 26710 zetacvg 26972 |
| Copyright terms: Public domain | W3C validator |