Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absef | Structured version Visualization version GIF version |
Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.) |
Ref | Expression |
---|---|
absef | ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | replim 14755 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
2 | 1 | fveq2d 6760 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴))))) |
3 | recl 14749 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
4 | 3 | recnd 10934 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
5 | ax-icn 10861 | . . . . . . 7 ⊢ i ∈ ℂ | |
6 | imcl 14750 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
7 | 6 | recnd 10934 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
8 | mulcl 10886 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
9 | 5, 7, 8 | sylancr 586 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
10 | efadd 15731 | . . . . . 6 ⊢ (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) | |
11 | 4, 9, 10 | syl2anc 583 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) |
12 | 2, 11 | eqtrd 2778 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) |
13 | 12 | fveq2d 6760 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))) |
14 | 3 | reefcld 15725 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℝ) |
15 | 14 | recnd 10934 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℂ) |
16 | efcl 15720 | . . . . 5 ⊢ ((i · (ℑ‘𝐴)) ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ) | |
17 | 9, 16 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ) |
18 | 15, 17 | absmuld 15094 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴)))))) |
19 | absefi 15833 | . . . . 5 ⊢ ((ℑ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1) | |
20 | 6, 19 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1) |
21 | 20 | oveq2d 7271 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · 1)) |
22 | 13, 18, 21 | 3eqtrd 2782 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = ((abs‘(exp‘(ℜ‘𝐴))) · 1)) |
23 | 15 | abscld 15076 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℝ) |
24 | 23 | recnd 10934 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℂ) |
25 | 24 | mulid1d 10923 | . 2 ⊢ (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · 1) = (abs‘(exp‘(ℜ‘𝐴)))) |
26 | efgt0 15740 | . . . . 5 ⊢ ((ℜ‘𝐴) ∈ ℝ → 0 < (exp‘(ℜ‘𝐴))) | |
27 | 3, 26 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → 0 < (exp‘(ℜ‘𝐴))) |
28 | 0re 10908 | . . . . 5 ⊢ 0 ∈ ℝ | |
29 | ltle 10994 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ (exp‘(ℜ‘𝐴)) ∈ ℝ) → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴)))) | |
30 | 28, 14, 29 | sylancr 586 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴)))) |
31 | 27, 30 | mpd 15 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ≤ (exp‘(ℜ‘𝐴))) |
32 | 14, 31 | absidd 15062 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) = (exp‘(ℜ‘𝐴))) |
33 | 22, 25, 32 | 3eqtrd 2782 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 ℜcre 14736 ℑcim 14737 abscabs 14873 expce 15699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 |
This theorem is referenced by: absefib 15835 eff1olem 25609 relog 25657 abscxp 25752 abscxp2 25753 abscxpbnd 25811 zetacvg 26069 |
Copyright terms: Public domain | W3C validator |