Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > absef | Structured version Visualization version GIF version |
Description: The absolute value of the exponential is the exponential of the real part. (Contributed by Paul Chapman, 13-Sep-2007.) |
Ref | Expression |
---|---|
absef | ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | replim 14825 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
2 | 1 | fveq2d 6775 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴))))) |
3 | recl 14819 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
4 | 3 | recnd 11004 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
5 | ax-icn 10931 | . . . . . . 7 ⊢ i ∈ ℂ | |
6 | imcl 14820 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
7 | 6 | recnd 11004 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ) |
8 | mulcl 10956 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ) | |
9 | 5, 7, 8 | sylancr 587 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ) |
10 | efadd 15801 | . . . . . 6 ⊢ (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) | |
11 | 4, 9, 10 | syl2anc 584 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) |
12 | 2, 11 | eqtrd 2780 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) |
13 | 12 | fveq2d 6775 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴)))))) |
14 | 3 | reefcld 15795 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℝ) |
15 | 14 | recnd 11004 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(ℜ‘𝐴)) ∈ ℂ) |
16 | efcl 15790 | . . . . 5 ⊢ ((i · (ℑ‘𝐴)) ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ) | |
17 | 9, 16 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘(i · (ℑ‘𝐴))) ∈ ℂ) |
18 | 15, 17 | absmuld 15164 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘((exp‘(ℜ‘𝐴)) · (exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴)))))) |
19 | absefi 15903 | . . . . 5 ⊢ ((ℑ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1) | |
20 | 6, 19 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℑ‘𝐴)))) = 1) |
21 | 20 | oveq2d 7287 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · (abs‘(exp‘(i · (ℑ‘𝐴))))) = ((abs‘(exp‘(ℜ‘𝐴))) · 1)) |
22 | 13, 18, 21 | 3eqtrd 2784 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = ((abs‘(exp‘(ℜ‘𝐴))) · 1)) |
23 | 15 | abscld 15146 | . . . 4 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℝ) |
24 | 23 | recnd 11004 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) ∈ ℂ) |
25 | 24 | mulid1d 10993 | . 2 ⊢ (𝐴 ∈ ℂ → ((abs‘(exp‘(ℜ‘𝐴))) · 1) = (abs‘(exp‘(ℜ‘𝐴)))) |
26 | efgt0 15810 | . . . . 5 ⊢ ((ℜ‘𝐴) ∈ ℝ → 0 < (exp‘(ℜ‘𝐴))) | |
27 | 3, 26 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℂ → 0 < (exp‘(ℜ‘𝐴))) |
28 | 0re 10978 | . . . . 5 ⊢ 0 ∈ ℝ | |
29 | ltle 11064 | . . . . 5 ⊢ ((0 ∈ ℝ ∧ (exp‘(ℜ‘𝐴)) ∈ ℝ) → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴)))) | |
30 | 28, 14, 29 | sylancr 587 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 < (exp‘(ℜ‘𝐴)) → 0 ≤ (exp‘(ℜ‘𝐴)))) |
31 | 27, 30 | mpd 15 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ≤ (exp‘(ℜ‘𝐴))) |
32 | 14, 31 | absidd 15132 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘(ℜ‘𝐴))) = (exp‘(ℜ‘𝐴))) |
33 | 22, 25, 32 | 3eqtrd 2784 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘(exp‘𝐴)) = (exp‘(ℜ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ℝcr 10871 0cc0 10872 1c1 10873 ici 10874 + caddc 10875 · cmul 10877 < clt 11010 ≤ cle 11011 ℜcre 14806 ℑcim 14807 abscabs 14943 expce 15769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-pm 8601 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-ico 13084 df-fz 13239 df-fzo 13382 df-fl 13510 df-seq 13720 df-exp 13781 df-fac 13986 df-bc 14015 df-hash 14043 df-shft 14776 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-limsup 15178 df-clim 15195 df-rlim 15196 df-sum 15396 df-ef 15775 df-sin 15777 df-cos 15778 |
This theorem is referenced by: absefib 15905 eff1olem 25702 relog 25750 abscxp 25845 abscxp2 25846 abscxpbnd 25904 zetacvg 26162 |
Copyright terms: Public domain | W3C validator |