Proof of Theorem lclkrlem2s
Step | Hyp | Ref
| Expression |
1 | | lclkrlem2o.k |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | lclkrlem2m.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
3 | 2 | snssd 4747 |
. . . . . . 7
⊢ (𝜑 → {𝑌} ⊆ 𝑉) |
4 | | lclkrlem2o.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
5 | | eqid 2739 |
. . . . . . . 8
⊢
((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) |
6 | | lclkrlem2o.u |
. . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
7 | | lclkrlem2m.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑈) |
8 | | lclkrlem2o.o |
. . . . . . . 8
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
9 | 4, 5, 6, 7, 8 | dochcl 39346 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑌} ⊆ 𝑉) → ( ⊥ ‘{𝑌}) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
10 | 1, 3, 9 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ( ⊥ ‘{𝑌}) ∈ ran
((DIsoH‘𝐾)‘𝑊)) |
11 | 4, 5, 8 | dochoc 39360 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘{𝑌}) ∈ ran
((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑌}))) = ( ⊥ ‘{𝑌})) |
12 | 1, 10, 11 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑌}))) = ( ⊥ ‘{𝑌})) |
13 | 12 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑌}))) = ( ⊥ ‘{𝑌})) |
14 | | lclkrlem2m.t |
. . . . . . . . . 10
⊢ · = (
·𝑠 ‘𝑈) |
15 | | lclkrlem2m.s |
. . . . . . . . . 10
⊢ 𝑆 = (Scalar‘𝑈) |
16 | | lclkrlem2m.q |
. . . . . . . . . 10
⊢ × =
(.r‘𝑆) |
17 | | lclkrlem2m.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑆) |
18 | | lclkrlem2m.i |
. . . . . . . . . 10
⊢ 𝐼 = (invr‘𝑆) |
19 | | lclkrlem2m.m |
. . . . . . . . . 10
⊢ − =
(-g‘𝑈) |
20 | | lclkrlem2m.f |
. . . . . . . . . 10
⊢ 𝐹 = (LFnl‘𝑈) |
21 | | lclkrlem2m.d |
. . . . . . . . . 10
⊢ 𝐷 = (LDual‘𝑈) |
22 | | lclkrlem2m.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝐷) |
23 | | lclkrlem2m.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
24 | | lclkrlem2m.e |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ 𝐹) |
25 | | lclkrlem2m.g |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
26 | | lclkrlem2n.n |
. . . . . . . . . 10
⊢ 𝑁 = (LSpan‘𝑈) |
27 | | lclkrlem2n.l |
. . . . . . . . . 10
⊢ 𝐿 = (LKer‘𝑈) |
28 | | lclkrlem2o.a |
. . . . . . . . . 10
⊢ ⊕ =
(LSSum‘𝑈) |
29 | | lclkrlem2q.le |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
30 | | lclkrlem2q.lg |
. . . . . . . . . 10
⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
31 | | lclkrlem2q.b |
. . . . . . . . . 10
⊢ 𝐵 = (𝑋 − ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌)) |
32 | | lclkrlem2q.n |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 ) |
33 | | lclkrlem2r.bn |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = (0g‘𝑈)) |
34 | 7, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 2, 24, 25, 26, 27, 4, 8, 6, 28, 1,
29, 30, 31, 32, 33 | lclkrlem2r 39517 |
. . . . . . . . 9
⊢ (𝜑 → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) |
35 | 34 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) |
36 | | eqid 2739 |
. . . . . . . . 9
⊢
(LSHyp‘𝑈) =
(LSHyp‘𝑈) |
37 | 4, 6, 1 | dvhlvec 39102 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LVec) |
38 | 37 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → 𝑈 ∈ LVec) |
39 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) |
40 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) |
41 | 36, 38, 39, 40 | lshpcmp 36981 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ((𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺)) ↔ (𝐿‘𝐺) = (𝐿‘(𝐸 + 𝐺)))) |
42 | 35, 41 | mpbid 231 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐺) = (𝐿‘(𝐸 + 𝐺))) |
43 | 30 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
44 | 42, 43 | eqtr3d 2781 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → (𝐿‘(𝐸 + 𝐺)) = ( ⊥ ‘{𝑌})) |
45 | 44 | fveq2d 6772 |
. . . . 5
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘(𝐿‘(𝐸 + 𝐺))) = ( ⊥ ‘( ⊥
‘{𝑌}))) |
46 | 45 | fveq2d 6772 |
. . . 4
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = ( ⊥ ‘( ⊥
‘( ⊥ ‘{𝑌})))) |
47 | 13, 46, 44 | 3eqtr4d 2789 |
. . 3
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
48 | 4, 6, 8, 7, 1 | dochoc1 39354 |
. . . . 5
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘𝑉)) = 𝑉) |
49 | 48 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑉)) = 𝑉) |
50 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → (𝐿‘(𝐸 + 𝐺)) = 𝑉) |
51 | 50 | fveq2d 6772 |
. . . . 5
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → ( ⊥ ‘(𝐿‘(𝐸 + 𝐺))) = ( ⊥ ‘𝑉)) |
52 | 51 | fveq2d 6772 |
. . . 4
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = ( ⊥ ‘( ⊥
‘𝑉))) |
53 | 49, 52, 50 | 3eqtr4d 2789 |
. . 3
⊢ (((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) ∧ (𝐿‘(𝐸 + 𝐺)) = 𝑉) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
54 | 4, 6, 1 | dvhlmod 39103 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ LMod) |
55 | 20, 21, 22, 54, 24, 25 | ldualvaddcl 37123 |
. . . . 5
⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
56 | 7, 36, 20, 27, 37, 55 | lkrshpor 37100 |
. . . 4
⊢ (𝜑 → ((𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈) ∨ (𝐿‘(𝐸 + 𝐺)) = 𝑉)) |
57 | 56 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) → ((𝐿‘(𝐸 + 𝐺)) ∈ (LSHyp‘𝑈) ∨ (𝐿‘(𝐸 + 𝐺)) = 𝑉)) |
58 | 47, 53, 57 | mpjaodan 955 |
. 2
⊢ ((𝜑 ∧ (𝐿‘𝐺) ∈ (LSHyp‘𝑈)) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
59 | 48 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥
‘𝑉)) = 𝑉) |
60 | 7, 20, 27, 54, 55 | lkrssv 37089 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉) |
61 | 60 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘(𝐸 + 𝐺)) ⊆ 𝑉) |
62 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘𝐺) = 𝑉) |
63 | 34 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘𝐺) ⊆ (𝐿‘(𝐸 + 𝐺))) |
64 | 62, 63 | eqsstrrd 3964 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → 𝑉 ⊆ (𝐿‘(𝐸 + 𝐺))) |
65 | 61, 64 | eqssd 3942 |
. . . . 5
⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → (𝐿‘(𝐸 + 𝐺)) = 𝑉) |
66 | 65 | fveq2d 6772 |
. . . 4
⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘(𝐿‘(𝐸 + 𝐺))) = ( ⊥ ‘𝑉)) |
67 | 66 | fveq2d 6772 |
. . 3
⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = ( ⊥ ‘( ⊥
‘𝑉))) |
68 | 59, 67, 65 | 3eqtr4d 2789 |
. 2
⊢ ((𝜑 ∧ (𝐿‘𝐺) = 𝑉) → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
69 | 7, 36, 20, 27, 37, 25 | lkrshpor 37100 |
. 2
⊢ (𝜑 → ((𝐿‘𝐺) ∈ (LSHyp‘𝑈) ∨ (𝐿‘𝐺) = 𝑉)) |
70 | 58, 68, 69 | mpjaodan 955 |
1
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |