Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatexch1 Structured version   Visualization version   GIF version

Theorem lsatexch1 37069
Description: The atom exch1ange property. (hlatexch1 37418 analog.) (Contributed by NM, 14-Jan-2015.)
Hypotheses
Ref Expression
lsatexch1.p = (LSSum‘𝑊)
lsatexch1.a 𝐴 = (LSAtoms‘𝑊)
lsatexch1.w (𝜑𝑊 ∈ LVec)
lsatexch1.u (𝜑𝑄𝐴)
lsatexch1.q (𝜑𝑅𝐴)
lsatexch1.r (𝜑𝑆𝐴)
lsatexch1.l (𝜑𝑄 ⊆ (𝑆 𝑅))
lsatexch1.z (𝜑𝑄𝑆)
Assertion
Ref Expression
lsatexch1 (𝜑𝑅 ⊆ (𝑆 𝑄))

Proof of Theorem lsatexch1
StepHypRef Expression
1 eqid 2740 . 2 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lsatexch1.p . 2 = (LSSum‘𝑊)
3 eqid 2740 . 2 (0g𝑊) = (0g𝑊)
4 lsatexch1.a . 2 𝐴 = (LSAtoms‘𝑊)
5 lsatexch1.w . 2 (𝜑𝑊 ∈ LVec)
6 lveclmod 20379 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . 3 (𝜑𝑊 ∈ LMod)
8 lsatexch1.r . . 3 (𝜑𝑆𝐴)
91, 4, 7, 8lsatlssel 37020 . 2 (𝜑𝑆 ∈ (LSubSp‘𝑊))
10 lsatexch1.u . 2 (𝜑𝑄𝐴)
11 lsatexch1.q . 2 (𝜑𝑅𝐴)
12 lsatexch1.l . 2 (𝜑𝑄 ⊆ (𝑆 𝑅))
13 lsatexch1.z . . . 4 (𝜑𝑄𝑆)
1413necomd 3001 . . 3 (𝜑𝑆𝑄)
153, 4, 5, 8, 10lsatnem0 37068 . . 3 (𝜑 → (𝑆𝑄 ↔ (𝑆𝑄) = {(0g𝑊)}))
1614, 15mpbid 231 . 2 (𝜑 → (𝑆𝑄) = {(0g𝑊)})
171, 2, 3, 4, 5, 9, 10, 11, 12, 16lsatexch 37066 1 (𝜑𝑅 ⊆ (𝑆 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  wne 2945  cin 3891  wss 3892  {csn 4567  cfv 6432  (class class class)co 7272  0gc0g 17161  LSSumclsm 19250  LModclmod 20134  LSubSpclss 20204  LVecclvec 20375  LSAtomsclsa 36997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-tpos 8034  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-0g 17163  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-submnd 18442  df-grp 18591  df-minusg 18592  df-sbg 18593  df-subg 18763  df-cntz 18934  df-oppg 18961  df-lsm 19252  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-ring 19796  df-oppr 19873  df-dvdsr 19894  df-unit 19895  df-invr 19925  df-drng 20004  df-lmod 20136  df-lss 20205  df-lsp 20245  df-lvec 20376  df-lsatoms 36999  df-lcv 37042
This theorem is referenced by:  lsatcvatlem  37072  dochexmidlem3  39485
  Copyright terms: Public domain W3C validator