Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatexch1 Structured version   Visualization version   GIF version

Theorem lsatexch1 39032
Description: The atom exch1ange property. (hlatexch1 39382 analog.) (Contributed by NM, 14-Jan-2015.)
Hypotheses
Ref Expression
lsatexch1.p = (LSSum‘𝑊)
lsatexch1.a 𝐴 = (LSAtoms‘𝑊)
lsatexch1.w (𝜑𝑊 ∈ LVec)
lsatexch1.u (𝜑𝑄𝐴)
lsatexch1.q (𝜑𝑅𝐴)
lsatexch1.r (𝜑𝑆𝐴)
lsatexch1.l (𝜑𝑄 ⊆ (𝑆 𝑅))
lsatexch1.z (𝜑𝑄𝑆)
Assertion
Ref Expression
lsatexch1 (𝜑𝑅 ⊆ (𝑆 𝑄))

Proof of Theorem lsatexch1
StepHypRef Expression
1 eqid 2729 . 2 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lsatexch1.p . 2 = (LSSum‘𝑊)
3 eqid 2729 . 2 (0g𝑊) = (0g𝑊)
4 lsatexch1.a . 2 𝐴 = (LSAtoms‘𝑊)
5 lsatexch1.w . 2 (𝜑𝑊 ∈ LVec)
6 lveclmod 21045 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . 3 (𝜑𝑊 ∈ LMod)
8 lsatexch1.r . . 3 (𝜑𝑆𝐴)
91, 4, 7, 8lsatlssel 38983 . 2 (𝜑𝑆 ∈ (LSubSp‘𝑊))
10 lsatexch1.u . 2 (𝜑𝑄𝐴)
11 lsatexch1.q . 2 (𝜑𝑅𝐴)
12 lsatexch1.l . 2 (𝜑𝑄 ⊆ (𝑆 𝑅))
13 lsatexch1.z . . . 4 (𝜑𝑄𝑆)
1413necomd 2980 . . 3 (𝜑𝑆𝑄)
153, 4, 5, 8, 10lsatnem0 39031 . . 3 (𝜑 → (𝑆𝑄 ↔ (𝑆𝑄) = {(0g𝑊)}))
1614, 15mpbid 232 . 2 (𝜑 → (𝑆𝑄) = {(0g𝑊)})
171, 2, 3, 4, 5, 9, 10, 11, 12, 16lsatexch 39029 1 (𝜑𝑅 ⊆ (𝑆 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  cin 3910  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  0gc0g 17378  LSSumclsm 19548  LModclmod 20798  LSubSpclss 20869  LVecclvec 21041  LSAtomsclsa 38960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20651  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lvec 21042  df-lsatoms 38962  df-lcv 39005
This theorem is referenced by:  lsatcvatlem  39035  dochexmidlem3  41449
  Copyright terms: Public domain W3C validator