Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatexch1 Structured version   Visualization version   GIF version

Theorem lsatexch1 39064
Description: The atom exch1ange property. (hlatexch1 39413 analog.) (Contributed by NM, 14-Jan-2015.)
Hypotheses
Ref Expression
lsatexch1.p = (LSSum‘𝑊)
lsatexch1.a 𝐴 = (LSAtoms‘𝑊)
lsatexch1.w (𝜑𝑊 ∈ LVec)
lsatexch1.u (𝜑𝑄𝐴)
lsatexch1.q (𝜑𝑅𝐴)
lsatexch1.r (𝜑𝑆𝐴)
lsatexch1.l (𝜑𝑄 ⊆ (𝑆 𝑅))
lsatexch1.z (𝜑𝑄𝑆)
Assertion
Ref Expression
lsatexch1 (𝜑𝑅 ⊆ (𝑆 𝑄))

Proof of Theorem lsatexch1
StepHypRef Expression
1 eqid 2730 . 2 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2 lsatexch1.p . 2 = (LSSum‘𝑊)
3 eqid 2730 . 2 (0g𝑊) = (0g𝑊)
4 lsatexch1.a . 2 𝐴 = (LSAtoms‘𝑊)
5 lsatexch1.w . 2 (𝜑𝑊 ∈ LVec)
6 lveclmod 21033 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
75, 6syl 17 . . 3 (𝜑𝑊 ∈ LMod)
8 lsatexch1.r . . 3 (𝜑𝑆𝐴)
91, 4, 7, 8lsatlssel 39015 . 2 (𝜑𝑆 ∈ (LSubSp‘𝑊))
10 lsatexch1.u . 2 (𝜑𝑄𝐴)
11 lsatexch1.q . 2 (𝜑𝑅𝐴)
12 lsatexch1.l . 2 (𝜑𝑄 ⊆ (𝑆 𝑅))
13 lsatexch1.z . . . 4 (𝜑𝑄𝑆)
1413necomd 2981 . . 3 (𝜑𝑆𝑄)
153, 4, 5, 8, 10lsatnem0 39063 . . 3 (𝜑 → (𝑆𝑄 ↔ (𝑆𝑄) = {(0g𝑊)}))
1614, 15mpbid 232 . 2 (𝜑 → (𝑆𝑄) = {(0g𝑊)})
171, 2, 3, 4, 5, 9, 10, 11, 12, 16lsatexch 39061 1 (𝜑𝑅 ⊆ (𝑆 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wne 2926  cin 3899  wss 3900  {csn 4574  cfv 6477  (class class class)co 7341  0gc0g 17335  LSSumclsm 19539  LModclmod 20786  LSubSpclss 20857  LVecclvec 21029  LSAtomsclsa 38992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-0g 17337  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cntz 19222  df-oppg 19251  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lvec 21030  df-lsatoms 38994  df-lcv 39037
This theorem is referenced by:  lsatcvatlem  39067  dochexmidlem3  41480
  Copyright terms: Public domain W3C validator