MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumrecl Structured version   Visualization version   GIF version

Theorem isumrecl 14901
Description: The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumrecl.1 𝑍 = (ℤ𝑀)
isumrecl.2 (𝜑𝑀 ∈ ℤ)
isumrecl.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumrecl.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
isumrecl.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumrecl (𝜑 → Σ𝑘𝑍 𝐴 ∈ ℝ)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumrecl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 isumrecl.1 . 2 𝑍 = (ℤ𝑀)
2 isumrecl.2 . 2 (𝜑𝑀 ∈ ℤ)
3 isumrecl.3 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
4 isumrecl.4 . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
54recnd 10405 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
6 isumrecl.5 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
71, 2, 3, 5, 6isumclim2 14894 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
83, 4eqeltrd 2858 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
91, 2, 8serfre 13148 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
109ffvelrnda 6623 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
111, 2, 7, 10climrecl 14722 1 (𝜑 → Σ𝑘𝑍 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  dom cdm 5355  cfv 6135  cr 10271   + caddc 10275  cz 11728  cuz 11992  seqcseq 13119  cli 14623  Σcsu 14824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628  df-sum 14825
This theorem is referenced by:  isumrpcl  14979  isumltss  14984  climcnds  14987  harmonic  14995  mertenslem1  15019  mertenslem2  15020  reefcl  15219  reeftlcl  15240  rpnnen2lem6  15352  prmreclem5  16028  prmreclem6  16029  ovoliun2  23710  abelthlem7  24629  log2tlbnd  25124  esumpcvgval  30738  esumcvg  30746  eulerpartlems  31020  knoppf  33108  geomcau  34163  stirlinglem12  41211
  Copyright terms: Public domain W3C validator