MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resubmet Structured version   Visualization version   GIF version

Theorem resubmet 24697
Description: The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
resubmet.1 𝑅 = (topGen‘ran (,))
resubmet.2 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
Assertion
Ref Expression
resubmet (𝐴 ⊆ ℝ → 𝐽 = (𝑅t 𝐴))

Proof of Theorem resubmet
StepHypRef Expression
1 resubmet.2 . . 3 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
2 xpss12 5656 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ⊆ ℝ) → (𝐴 × 𝐴) ⊆ (ℝ × ℝ))
32anidms 566 . . . . 5 (𝐴 ⊆ ℝ → (𝐴 × 𝐴) ⊆ (ℝ × ℝ))
43resabs1d 5982 . . . 4 (𝐴 ⊆ ℝ → (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴)))
54fveq2d 6865 . . 3 (𝐴 ⊆ ℝ → (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
61, 5eqtr4id 2784 . 2 (𝐴 ⊆ ℝ → 𝐽 = (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴))))
7 eqid 2730 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
87rexmet 24686 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
9 eqid 2730 . . . 4 (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴)) = (((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴))
10 resubmet.1 . . . . 5 𝑅 = (topGen‘ran (,))
11 eqid 2730 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
127, 11tgioo 24691 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1310, 12eqtri 2753 . . . 4 𝑅 = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
14 eqid 2730 . . . 4 (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴))) = (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴)))
159, 13, 14metrest 24419 . . 3 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ⊆ ℝ) → (𝑅t 𝐴) = (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴))))
168, 15mpan 690 . 2 (𝐴 ⊆ ℝ → (𝑅t 𝐴) = (MetOpen‘(((abs ∘ − ) ↾ (ℝ × ℝ)) ↾ (𝐴 × 𝐴))))
176, 16eqtr4d 2768 1 (𝐴 ⊆ ℝ → 𝐽 = (𝑅t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917   × cxp 5639  ran crn 5642  cres 5643  ccom 5645  cfv 6514  (class class class)co 7390  cr 11074  cmin 11412  (,)cioo 13313  abscabs 15207  t crest 17390  topGenctg 17407  ∞Metcxmet 21256  MetOpencmopn 21261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840
This theorem is referenced by:  dfii2  24782  icoopnst  24843  iocopnst  24844  evthicc  25367
  Copyright terms: Public domain W3C validator