| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgioo2 | Structured version Visualization version GIF version | ||
| Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) |
| Ref | Expression |
|---|---|
| tgioo2.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
| Ref | Expression |
|---|---|
| tgioo2 | ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 2 | cnxmet 24666 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
| 3 | ax-resscn 11131 | . . 3 ⊢ ℝ ⊆ ℂ | |
| 4 | tgioo2.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
| 5 | 4 | cnfldtopn 24675 | . . . 4 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
| 6 | eqid 2730 | . . . 4 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
| 7 | 1, 5, 6 | metrest 24418 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ ℝ ⊆ ℂ) → (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))) |
| 8 | 2, 3, 7 | mp2an 692 | . 2 ⊢ (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
| 9 | 1, 8 | tgioo 24690 | 1 ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 × cxp 5638 ran crn 5641 ↾ cres 5642 ∘ ccom 5644 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 ℝcr 11073 − cmin 11411 (,)cioo 13312 abscabs 15206 ↾t crest 17389 TopOpenctopn 17390 topGenctg 17406 ∞Metcxmet 21255 MetOpencmopn 21260 ℂfldccnfld 21270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-fz 13475 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-rest 17391 df-topn 17392 df-topgen 17412 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-cnfld 21271 df-top 22787 df-topon 22804 df-bases 22839 |
| This theorem is referenced by: rerest 24698 tgioo4 24699 zcld2 24710 metdcn 24735 ngnmcncn 24740 metdscn2 24752 abscncfALT 24824 cnrehmeo 24857 cnrehmeoOLD 24858 cmvthOLD 25902 dvcnvrelem2 25929 dvfsumleOLD 25933 dvfsumlem2OLD 25940 ftc1 25955 taylthlem2OLD 26289 pige3ALT 26435 ftalem3 26991 nmcnc 30631 ipasslem7 30771 limclner 45642 |
| Copyright terms: Public domain | W3C validator |