![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgioo2 | Structured version Visualization version GIF version |
Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
tgioo2.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
tgioo2 | ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | cnxmet 24814 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
3 | ax-resscn 11241 | . . 3 ⊢ ℝ ⊆ ℂ | |
4 | tgioo2.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
5 | 4 | cnfldtopn 24823 | . . . 4 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
6 | eqid 2740 | . . . 4 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
7 | 1, 5, 6 | metrest 24558 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ ℝ ⊆ ℂ) → (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))) |
8 | 2, 3, 7 | mp2an 691 | . 2 ⊢ (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
9 | 1, 8 | tgioo 24837 | 1 ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 × cxp 5698 ran crn 5701 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 − cmin 11520 (,)cioo 13407 abscabs 15283 ↾t crest 17480 TopOpenctopn 17481 topGenctg 17497 ∞Metcxmet 21372 MetOpencmopn 21377 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-bases 22974 |
This theorem is referenced by: rerest 24845 tgioo3 24846 zcld2 24856 metdcn 24881 ngnmcncn 24886 metdscn2 24898 abscncfALT 24970 cnrehmeo 25003 cnrehmeoOLD 25004 rellycmp 25008 evth 25010 evth2 25011 lebnumlem2 25013 resscdrg 25411 retopn 25432 cncombf 25712 cnmbf 25713 dvmptresicc 25971 dvcjbr 26007 rolle 26048 cmvth 26049 cmvthOLD 26050 mvth 26051 dvlip 26052 dvlipcn 26053 dvlip2 26054 c1liplem1 26055 dvgt0lem1 26061 dvle 26066 dvivthlem1 26067 dvne0 26070 lhop1lem 26072 lhop2 26074 lhop 26075 dvcnvrelem1 26076 dvcnvrelem2 26077 dvcnvre 26078 dvcvx 26079 dvfsumle 26080 dvfsumleOLD 26081 dvfsumabs 26083 dvfsumlem2 26087 dvfsumlem2OLD 26088 ftc1 26103 ftc1cn 26104 ftc2 26105 ftc2ditglem 26106 itgparts 26108 itgsubstlem 26109 itgpowd 26111 taylthlem2 26434 taylthlem2OLD 26435 efcvx 26511 pige3ALT 26580 dvloglem 26708 logdmopn 26709 advlog 26714 advlogexp 26715 logccv 26723 loglesqrt 26822 lgamgulmlem2 27091 ftalem3 27136 log2sumbnd 27606 nmcnc 30728 ipasslem7 30868 rmulccn 33874 raddcn 33875 ftc2re 34575 knoppcnlem10 36468 knoppcnlem11 36469 broucube 37614 ftc1cnnc 37652 ftc2nc 37662 dvasin 37664 dvacos 37665 dvreasin 37666 dvreacos 37667 areacirclem1 37668 areacirc 37673 dvrelog2 42021 dvrelog3 42022 aks4d1p1p6 42030 lhe4.4ex1a 44298 refsumcn 44930 xrtgcntopre 45394 tgioo4 45491 climreeq 45534 limcresiooub 45563 limcresioolb 45564 lptioo2cn 45566 lptioo1cn 45567 limclner 45572 cncfiooicclem1 45814 jumpncnp 45819 dvresioo 45842 dvbdfbdioolem1 45849 itgsin0pilem1 45871 itgsinexplem1 45875 itgsubsticclem 45896 itgiccshift 45901 itgperiod 45902 itgsbtaddcnst 45903 dirkeritg 46023 dirkercncflem2 46025 dirkercncflem3 46026 dirkercncflem4 46027 dirkercncf 46028 fourierdlem28 46056 fourierdlem32 46060 fourierdlem33 46061 fourierdlem39 46067 fourierdlem56 46083 fourierdlem57 46084 fourierdlem58 46085 fourierdlem59 46086 fourierdlem62 46089 fourierdlem68 46095 fourierdlem72 46099 fourierdlem73 46100 fourierdlem74 46101 fourierdlem75 46102 fourierdlem80 46107 fourierdlem94 46121 fourierdlem103 46130 fourierdlem104 46131 fourierdlem113 46140 fouriercnp 46147 fouriersw 46152 fouriercn 46153 etransclem2 46157 etransclem23 46178 etransclem35 46190 etransclem38 46193 etransclem39 46194 etransclem44 46199 etransclem45 46200 etransclem46 46201 etransclem47 46202 |
Copyright terms: Public domain | W3C validator |