![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgioo2 | Structured version Visualization version GIF version |
Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) |
Ref | Expression |
---|---|
tgioo2.1 | ⊢ 𝐽 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
tgioo2 | ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
2 | cnxmet 24509 | . . 3 ⊢ (abs ∘ − ) ∈ (∞Met‘ℂ) | |
3 | ax-resscn 11169 | . . 3 ⊢ ℝ ⊆ ℂ | |
4 | tgioo2.1 | . . . . 5 ⊢ 𝐽 = (TopOpen‘ℂfld) | |
5 | 4 | cnfldtopn 24518 | . . . 4 ⊢ 𝐽 = (MetOpen‘(abs ∘ − )) |
6 | eqid 2732 | . . . 4 ⊢ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) | |
7 | 1, 5, 6 | metrest 24253 | . . 3 ⊢ (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ ℝ ⊆ ℂ) → (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))) |
8 | 2, 3, 7 | mp2an 690 | . 2 ⊢ (𝐽 ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) |
9 | 1, 8 | tgioo 24532 | 1 ⊢ (topGen‘ran (,)) = (𝐽 ↾t ℝ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 × cxp 5674 ran crn 5677 ↾ cres 5678 ∘ ccom 5680 ‘cfv 6543 (class class class)co 7411 ℂcc 11110 ℝcr 11111 − cmin 11448 (,)cioo 13328 abscabs 15185 ↾t crest 17370 TopOpenctopn 17371 topGenctg 17387 ∞Metcxmet 21129 MetOpencmopn 21134 ℂfldccnfld 21144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-starv 17216 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-rest 17372 df-topn 17373 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-top 22616 df-topon 22633 df-bases 22669 |
This theorem is referenced by: rerest 24540 tgioo3 24541 zcld2 24551 metdcn 24576 ngnmcncn 24581 metdscn2 24593 abscncfALT 24664 cnrehmeo 24693 rellycmp 24697 evth 24699 evth2 24700 lebnumlem2 24702 resscdrg 25099 retopn 25120 cncombf 25399 cnmbf 25400 dvmptresicc 25657 dvcjbr 25690 rolle 25731 cmvth 25732 mvth 25733 dvlip 25734 dvlipcn 25735 dvlip2 25736 c1liplem1 25737 dvgt0lem1 25743 dvle 25748 dvivthlem1 25749 dvne0 25752 lhop1lem 25754 lhop2 25756 lhop 25757 dvcnvrelem1 25758 dvcnvrelem2 25759 dvcnvre 25760 dvcvx 25761 dvfsumle 25762 dvfsumabs 25764 dvfsumlem2 25768 ftc1 25783 ftc1cn 25784 ftc2 25785 ftc2ditglem 25786 itgparts 25788 itgsubstlem 25789 itgpowd 25791 taylthlem2 26110 efcvx 26185 pige3ALT 26253 dvloglem 26380 logdmopn 26381 advlog 26386 advlogexp 26387 logccv 26395 loglesqrt 26490 lgamgulmlem2 26758 ftalem3 26803 log2sumbnd 27271 nmcnc 30204 ipasslem7 30344 rmulccn 33194 raddcn 33195 ftc2re 33896 gg-cnrehmeo 35457 gg-rmulccn 35465 gg-cmvth 35467 gg-dvfsumle 35468 gg-dvfsumlem2 35469 knoppcnlem10 35681 knoppcnlem11 35682 broucube 36825 ftc1cnnc 36863 ftc2nc 36873 dvasin 36875 dvacos 36876 dvreasin 36877 dvreacos 36878 areacirclem1 36879 areacirc 36884 dvrelog2 41235 dvrelog3 41236 aks4d1p1p6 41244 lhe4.4ex1a 43390 refsumcn 44016 xrtgcntopre 44488 tgioo4 44585 climreeq 44628 limcresiooub 44657 limcresioolb 44658 lptioo2cn 44660 lptioo1cn 44661 limclner 44666 cncfiooicclem1 44908 jumpncnp 44913 dvresioo 44936 dvbdfbdioolem1 44943 itgsin0pilem1 44965 itgsinexplem1 44969 itgsubsticclem 44990 itgiccshift 44995 itgperiod 44996 itgsbtaddcnst 44997 dirkeritg 45117 dirkercncflem2 45119 dirkercncflem3 45120 dirkercncflem4 45121 dirkercncf 45122 fourierdlem28 45150 fourierdlem32 45154 fourierdlem33 45155 fourierdlem39 45161 fourierdlem56 45177 fourierdlem57 45178 fourierdlem58 45179 fourierdlem59 45180 fourierdlem62 45183 fourierdlem68 45189 fourierdlem72 45193 fourierdlem73 45194 fourierdlem74 45195 fourierdlem75 45196 fourierdlem80 45201 fourierdlem94 45215 fourierdlem103 45224 fourierdlem104 45225 fourierdlem113 45234 fouriercnp 45241 fouriersw 45246 fouriercn 45247 etransclem2 45251 etransclem23 45272 etransclem35 45284 etransclem38 45287 etransclem39 45288 etransclem44 45293 etransclem45 45294 etransclem46 45295 etransclem47 45296 |
Copyright terms: Public domain | W3C validator |