![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smflimlem5 | Structured version Visualization version GIF version |
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smflimlem5.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
smflimlem5.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
smflimlem5.3 | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smflimlem5.4 | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
smflimlem5.5 | ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } |
smflimlem5.6 | ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) |
smflimlem5.7 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
smflimlem5.8 | ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) |
smflimlem5.9 | ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) |
smflimlem5.10 | ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) |
smflimlem5.11 | ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) |
Ref | Expression |
---|---|
smflimlem5 | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smflimlem5.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | smflimlem5.3 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | smflimlem5.4 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
4 | smflimlem5.5 | . . . 4 ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } | |
5 | smflimlem5.6 | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) | |
6 | smflimlem5.7 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | smflimlem5.8 | . . . 4 ⊢ 𝑃 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ {𝑠 ∈ 𝑆 ∣ {𝑥 ∈ dom (𝐹‘𝑚) ∣ ((𝐹‘𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹‘𝑚))}) | |
8 | smflimlem5.9 | . . . 4 ⊢ 𝐻 = (𝑚 ∈ 𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))) | |
9 | smflimlem5.10 | . . . 4 ⊢ 𝐼 = ∩ 𝑘 ∈ ℕ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)(𝑚𝐻𝑘) | |
10 | smflimlem5.11 | . . . 4 ⊢ ((𝜑 ∧ 𝑟 ∈ ran 𝑃) → (𝐶‘𝑟) ∈ 𝑟) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | smflimlem2 45788 | . . 3 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ⊆ (𝐷 ∩ 𝐼)) |
12 | smflimlem5.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | smflimlem4 45790 | . . 3 ⊢ (𝜑 → (𝐷 ∩ 𝐼) ⊆ {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴}) |
14 | 11, 13 | eqssd 4000 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} = (𝐷 ∩ 𝐼)) |
15 | 1, 2, 4, 7, 8, 9, 10 | smflimlem1 45787 | . 2 ⊢ (𝜑 → (𝐷 ∩ 𝐼) ∈ (𝑆 ↾t 𝐷)) |
16 | 14, 15 | eqeltrd 2832 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐺‘𝑥) ≤ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 ∩ cin 3948 ∪ ciun 4998 ∩ ciin 4999 class class class wbr 5149 ↦ cmpt 5232 dom cdm 5677 ran crn 5678 ⟶wf 6540 ‘cfv 6544 (class class class)co 7412 ∈ cmpo 7414 ℝcr 11112 1c1 11114 + caddc 11116 < clt 11253 ≤ cle 11254 / cdiv 11876 ℕcn 12217 ℤcz 12563 ℤ≥cuz 12827 ⇝ cli 15433 ↾t crest 17371 SAlgcsalg 45324 SMblFncsmblfn 45711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-omul 8474 df-er 8706 df-map 8825 df-pm 8826 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-inf 9441 df-oi 9508 df-card 9937 df-acn 9940 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-ioo 13333 df-ico 13335 df-fl 13762 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-rlim 15438 df-rest 17373 df-salg 45325 df-smblfn 45712 |
This theorem is referenced by: smflimlem6 45792 |
Copyright terms: Public domain | W3C validator |