Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdifidl Structured version   Visualization version   GIF version

Theorem ssdifidl 33428
Description: Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
ssdifidl.1 𝐵 = (Base‘𝑅)
ssdifidl.2 (𝜑𝑅 ∈ Ring)
ssdifidl.3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
ssdifidl.4 (𝜑𝑆𝐵)
ssdifidl.5 (𝜑 → (𝑆𝐼) = ∅)
ssdifidl.6 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
Assertion
Ref Expression
ssdifidl (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Distinct variable groups:   𝐼,𝑝   𝑃,𝑖,𝑗   𝑅,𝑝   𝑆,𝑝   𝜑,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑝)   𝐵(𝑖,𝑗,𝑝)   𝑃(𝑝)   𝑅(𝑖,𝑗)   𝑆(𝑖,𝑗)   𝐼(𝑖,𝑗)

Proof of Theorem ssdifidl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ineq2 4177 . . . . . . 7 (𝑝 = 𝐼 → (𝑆𝑝) = (𝑆𝐼))
21eqeq1d 2731 . . . . . 6 (𝑝 = 𝐼 → ((𝑆𝑝) = ∅ ↔ (𝑆𝐼) = ∅))
3 sseq2 3973 . . . . . 6 (𝑝 = 𝐼 → (𝐼𝑝𝐼𝐼))
42, 3anbi12d 632 . . . . 5 (𝑝 = 𝐼 → (((𝑆𝑝) = ∅ ∧ 𝐼𝑝) ↔ ((𝑆𝐼) = ∅ ∧ 𝐼𝐼)))
5 ssdifidl.3 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
6 ssdifidl.5 . . . . . 6 (𝜑 → (𝑆𝐼) = ∅)
7 ssidd 3970 . . . . . 6 (𝜑𝐼𝐼)
86, 7jca 511 . . . . 5 (𝜑 → ((𝑆𝐼) = ∅ ∧ 𝐼𝐼))
94, 5, 8elrabd 3661 . . . 4 (𝜑𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)})
10 ssdifidl.6 . . . 4 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
119, 10eleqtrrdi 2839 . . 3 (𝜑𝐼𝑃)
1211ne0d 4305 . 2 (𝜑𝑃 ≠ ∅)
13 ssdifidl.1 . . . . 5 𝐵 = (Base‘𝑅)
14 ssdifidl.2 . . . . . 6 (𝜑𝑅 ∈ Ring)
1514adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑅 ∈ Ring)
165adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅))
17 ssdifidl.4 . . . . . 6 (𝜑𝑆𝐵)
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑆𝐵)
196adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → (𝑆𝐼) = ∅)
20 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
21 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ≠ ∅)
22 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → [] Or 𝑧)
2313, 15, 16, 18, 19, 10, 20, 21, 22ssdifidllem 33427 . . . 4 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
2423ex 412 . . 3 (𝜑 → ((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
2524alrimiv 1927 . 2 (𝜑 → ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
26 fvex 6871 . . . 4 (LIdeal‘𝑅) ∈ V
2710, 26rabex2 5296 . . 3 𝑃 ∈ V
2827zornn0 10461 . 2 ((𝑃 ≠ ∅ ∧ ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃)) → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
2912, 25, 28syl2anc 584 1 (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cin 3913  wss 3914  wpss 3915  c0 4296   cuni 4871   Or wor 5545  cfv 6511   [] crpss 7698  Basecbs 17179  Ringcrg 20142  LIdealclidl 21116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118
This theorem is referenced by:  ssdifidlprm  33429
  Copyright terms: Public domain W3C validator