![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdifidl | Structured version Visualization version GIF version |
Description: Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
ssdifidl.1 | ⊢ 𝐵 = (Base‘𝑅) |
ssdifidl.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ssdifidl.3 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
ssdifidl.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
ssdifidl.5 | ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) |
ssdifidl.6 | ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} |
Ref | Expression |
---|---|
ssdifidl | ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4204 | . . . . . . 7 ⊢ (𝑝 = 𝐼 → (𝑆 ∩ 𝑝) = (𝑆 ∩ 𝐼)) | |
2 | 1 | eqeq1d 2727 | . . . . . 6 ⊢ (𝑝 = 𝐼 → ((𝑆 ∩ 𝑝) = ∅ ↔ (𝑆 ∩ 𝐼) = ∅)) |
3 | sseq2 4003 | . . . . . 6 ⊢ (𝑝 = 𝐼 → (𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ 𝐼)) | |
4 | 2, 3 | anbi12d 630 | . . . . 5 ⊢ (𝑝 = 𝐼 → (((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝) ↔ ((𝑆 ∩ 𝐼) = ∅ ∧ 𝐼 ⊆ 𝐼))) |
5 | ssdifidl.3 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
6 | ssdifidl.5 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) | |
7 | ssidd 4000 | . . . . . 6 ⊢ (𝜑 → 𝐼 ⊆ 𝐼) | |
8 | 6, 7 | jca 510 | . . . . 5 ⊢ (𝜑 → ((𝑆 ∩ 𝐼) = ∅ ∧ 𝐼 ⊆ 𝐼)) |
9 | 4, 5, 8 | elrabd 3681 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)}) |
10 | ssdifidl.6 | . . . 4 ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} | |
11 | 9, 10 | eleqtrrdi 2836 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑃) |
12 | 11 | ne0d 4335 | . 2 ⊢ (𝜑 → 𝑃 ≠ ∅) |
13 | ssdifidl.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
14 | ssdifidl.2 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
15 | 14 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑅 ∈ Ring) |
16 | 5 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅)) |
17 | ssdifidl.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
18 | 17 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑆 ⊆ 𝐵) |
19 | 6 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → (𝑆 ∩ 𝐼) = ∅) |
20 | simpr1 1191 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑧 ⊆ 𝑃) | |
21 | simpr2 1192 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑧 ≠ ∅) | |
22 | simpr3 1193 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → [⊊] Or 𝑧) | |
23 | 13, 15, 16, 18, 19, 10, 20, 21, 22 | ssdifidllem 33268 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → ∪ 𝑧 ∈ 𝑃) |
24 | 23 | ex 411 | . . 3 ⊢ (𝜑 → ((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) |
25 | 24 | alrimiv 1922 | . 2 ⊢ (𝜑 → ∀𝑧((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) |
26 | fvex 6909 | . . . 4 ⊢ (LIdeal‘𝑅) ∈ V | |
27 | 10, 26 | rabex2 5337 | . . 3 ⊢ 𝑃 ∈ V |
28 | 27 | zornn0 10533 | . 2 ⊢ ((𝑃 ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
29 | 12, 25, 28 | syl2anc 582 | 1 ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∀wral 3050 ∃wrex 3059 {crab 3418 ∩ cin 3943 ⊆ wss 3944 ⊊ wpss 3945 ∅c0 4322 ∪ cuni 4909 Or wor 5589 ‘cfv 6549 [⊊] crpss 7728 Basecbs 17183 Ringcrg 20185 LIdealclidl 21114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-ac2 10488 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-rpss 7729 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9926 df-card 9964 df-ac 10141 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-sbg 18903 df-subg 19086 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-subrg 20520 df-lmod 20757 df-lss 20828 df-sra 21070 df-rgmod 21071 df-lidl 21116 |
This theorem is referenced by: ssdifidlprm 33270 |
Copyright terms: Public domain | W3C validator |