Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdifidl Structured version   Visualization version   GIF version

Theorem ssdifidl 33429
Description: Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
ssdifidl.1 𝐵 = (Base‘𝑅)
ssdifidl.2 (𝜑𝑅 ∈ Ring)
ssdifidl.3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
ssdifidl.4 (𝜑𝑆𝐵)
ssdifidl.5 (𝜑 → (𝑆𝐼) = ∅)
ssdifidl.6 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
Assertion
Ref Expression
ssdifidl (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Distinct variable groups:   𝐼,𝑝   𝑃,𝑖,𝑗   𝑅,𝑝   𝑆,𝑝   𝜑,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑝)   𝐵(𝑖,𝑗,𝑝)   𝑃(𝑝)   𝑅(𝑖,𝑗)   𝑆(𝑖,𝑗)   𝐼(𝑖,𝑗)

Proof of Theorem ssdifidl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ineq2 4163 . . . . . . 7 (𝑝 = 𝐼 → (𝑆𝑝) = (𝑆𝐼))
21eqeq1d 2735 . . . . . 6 (𝑝 = 𝐼 → ((𝑆𝑝) = ∅ ↔ (𝑆𝐼) = ∅))
3 sseq2 3957 . . . . . 6 (𝑝 = 𝐼 → (𝐼𝑝𝐼𝐼))
42, 3anbi12d 632 . . . . 5 (𝑝 = 𝐼 → (((𝑆𝑝) = ∅ ∧ 𝐼𝑝) ↔ ((𝑆𝐼) = ∅ ∧ 𝐼𝐼)))
5 ssdifidl.3 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
6 ssdifidl.5 . . . . . 6 (𝜑 → (𝑆𝐼) = ∅)
7 ssidd 3954 . . . . . 6 (𝜑𝐼𝐼)
86, 7jca 511 . . . . 5 (𝜑 → ((𝑆𝐼) = ∅ ∧ 𝐼𝐼))
94, 5, 8elrabd 3645 . . . 4 (𝜑𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)})
10 ssdifidl.6 . . . 4 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
119, 10eleqtrrdi 2844 . . 3 (𝜑𝐼𝑃)
1211ne0d 4291 . 2 (𝜑𝑃 ≠ ∅)
13 ssdifidl.1 . . . . 5 𝐵 = (Base‘𝑅)
14 ssdifidl.2 . . . . . 6 (𝜑𝑅 ∈ Ring)
1514adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑅 ∈ Ring)
165adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅))
17 ssdifidl.4 . . . . . 6 (𝜑𝑆𝐵)
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑆𝐵)
196adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → (𝑆𝐼) = ∅)
20 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
21 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ≠ ∅)
22 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → [] Or 𝑧)
2313, 15, 16, 18, 19, 10, 20, 21, 22ssdifidllem 33428 . . . 4 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
2423ex 412 . . 3 (𝜑 → ((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
2524alrimiv 1928 . 2 (𝜑 → ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
26 fvex 6841 . . . 4 (LIdeal‘𝑅) ∈ V
2710, 26rabex2 5281 . . 3 𝑃 ∈ V
2827zornn0 10406 . 2 ((𝑃 ≠ ∅ ∧ ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃)) → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
2912, 25, 28syl2anc 584 1 (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  cin 3897  wss 3898  wpss 3899  c0 4282   cuni 4858   Or wor 5526  cfv 6486   [] crpss 7661  Basecbs 17122  Ringcrg 20153  LIdealclidl 21145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-ac2 10361  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-rpss 7662  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9801  df-card 9839  df-ac 10014  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrg 20487  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-lidl 21147
This theorem is referenced by:  ssdifidlprm  33430
  Copyright terms: Public domain W3C validator