Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdifidl Structured version   Visualization version   GIF version

Theorem ssdifidl 33435
Description: Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
ssdifidl.1 𝐵 = (Base‘𝑅)
ssdifidl.2 (𝜑𝑅 ∈ Ring)
ssdifidl.3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
ssdifidl.4 (𝜑𝑆𝐵)
ssdifidl.5 (𝜑 → (𝑆𝐼) = ∅)
ssdifidl.6 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
Assertion
Ref Expression
ssdifidl (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Distinct variable groups:   𝐼,𝑝   𝑃,𝑖,𝑗   𝑅,𝑝   𝑆,𝑝   𝜑,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑝)   𝐵(𝑖,𝑗,𝑝)   𝑃(𝑝)   𝑅(𝑖,𝑗)   𝑆(𝑖,𝑗)   𝐼(𝑖,𝑗)

Proof of Theorem ssdifidl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ineq2 4180 . . . . . . 7 (𝑝 = 𝐼 → (𝑆𝑝) = (𝑆𝐼))
21eqeq1d 2732 . . . . . 6 (𝑝 = 𝐼 → ((𝑆𝑝) = ∅ ↔ (𝑆𝐼) = ∅))
3 sseq2 3976 . . . . . 6 (𝑝 = 𝐼 → (𝐼𝑝𝐼𝐼))
42, 3anbi12d 632 . . . . 5 (𝑝 = 𝐼 → (((𝑆𝑝) = ∅ ∧ 𝐼𝑝) ↔ ((𝑆𝐼) = ∅ ∧ 𝐼𝐼)))
5 ssdifidl.3 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
6 ssdifidl.5 . . . . . 6 (𝜑 → (𝑆𝐼) = ∅)
7 ssidd 3973 . . . . . 6 (𝜑𝐼𝐼)
86, 7jca 511 . . . . 5 (𝜑 → ((𝑆𝐼) = ∅ ∧ 𝐼𝐼))
94, 5, 8elrabd 3664 . . . 4 (𝜑𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)})
10 ssdifidl.6 . . . 4 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
119, 10eleqtrrdi 2840 . . 3 (𝜑𝐼𝑃)
1211ne0d 4308 . 2 (𝜑𝑃 ≠ ∅)
13 ssdifidl.1 . . . . 5 𝐵 = (Base‘𝑅)
14 ssdifidl.2 . . . . . 6 (𝜑𝑅 ∈ Ring)
1514adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑅 ∈ Ring)
165adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅))
17 ssdifidl.4 . . . . . 6 (𝜑𝑆𝐵)
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑆𝐵)
196adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → (𝑆𝐼) = ∅)
20 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
21 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ≠ ∅)
22 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → [] Or 𝑧)
2313, 15, 16, 18, 19, 10, 20, 21, 22ssdifidllem 33434 . . . 4 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
2423ex 412 . . 3 (𝜑 → ((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
2524alrimiv 1927 . 2 (𝜑 → ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
26 fvex 6874 . . . 4 (LIdeal‘𝑅) ∈ V
2710, 26rabex2 5299 . . 3 𝑃 ∈ V
2827zornn0 10468 . 2 ((𝑃 ≠ ∅ ∧ ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃)) → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
2912, 25, 28syl2anc 584 1 (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cin 3916  wss 3917  wpss 3918  c0 4299   cuni 4874   Or wor 5548  cfv 6514   [] crpss 7701  Basecbs 17186  Ringcrg 20149  LIdealclidl 21123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-lidl 21125
This theorem is referenced by:  ssdifidlprm  33436
  Copyright terms: Public domain W3C validator