| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdifidl | Structured version Visualization version GIF version | ||
| Description: Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| Ref | Expression |
|---|---|
| ssdifidl.1 | ⊢ 𝐵 = (Base‘𝑅) |
| ssdifidl.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ssdifidl.3 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
| ssdifidl.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| ssdifidl.5 | ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) |
| ssdifidl.6 | ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} |
| Ref | Expression |
|---|---|
| ssdifidl | ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq2 4180 | . . . . . . 7 ⊢ (𝑝 = 𝐼 → (𝑆 ∩ 𝑝) = (𝑆 ∩ 𝐼)) | |
| 2 | 1 | eqeq1d 2732 | . . . . . 6 ⊢ (𝑝 = 𝐼 → ((𝑆 ∩ 𝑝) = ∅ ↔ (𝑆 ∩ 𝐼) = ∅)) |
| 3 | sseq2 3976 | . . . . . 6 ⊢ (𝑝 = 𝐼 → (𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ 𝐼)) | |
| 4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝑝 = 𝐼 → (((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝) ↔ ((𝑆 ∩ 𝐼) = ∅ ∧ 𝐼 ⊆ 𝐼))) |
| 5 | ssdifidl.3 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
| 6 | ssdifidl.5 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) | |
| 7 | ssidd 3973 | . . . . . 6 ⊢ (𝜑 → 𝐼 ⊆ 𝐼) | |
| 8 | 6, 7 | jca 511 | . . . . 5 ⊢ (𝜑 → ((𝑆 ∩ 𝐼) = ∅ ∧ 𝐼 ⊆ 𝐼)) |
| 9 | 4, 5, 8 | elrabd 3664 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)}) |
| 10 | ssdifidl.6 | . . . 4 ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} | |
| 11 | 9, 10 | eleqtrrdi 2840 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑃) |
| 12 | 11 | ne0d 4308 | . 2 ⊢ (𝜑 → 𝑃 ≠ ∅) |
| 13 | ssdifidl.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 14 | ssdifidl.2 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑅 ∈ Ring) |
| 16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅)) |
| 17 | ssdifidl.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑆 ⊆ 𝐵) |
| 19 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → (𝑆 ∩ 𝐼) = ∅) |
| 20 | simpr1 1195 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑧 ⊆ 𝑃) | |
| 21 | simpr2 1196 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑧 ≠ ∅) | |
| 22 | simpr3 1197 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → [⊊] Or 𝑧) | |
| 23 | 13, 15, 16, 18, 19, 10, 20, 21, 22 | ssdifidllem 33434 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → ∪ 𝑧 ∈ 𝑃) |
| 24 | 23 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) |
| 25 | 24 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑧((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) |
| 26 | fvex 6874 | . . . 4 ⊢ (LIdeal‘𝑅) ∈ V | |
| 27 | 10, 26 | rabex2 5299 | . . 3 ⊢ 𝑃 ∈ V |
| 28 | 27 | zornn0 10468 | . 2 ⊢ ((𝑃 ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
| 29 | 12, 25, 28 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 ∩ cin 3916 ⊆ wss 3917 ⊊ wpss 3918 ∅c0 4299 ∪ cuni 4874 Or wor 5548 ‘cfv 6514 [⊊] crpss 7701 Basecbs 17186 Ringcrg 20149 LIdealclidl 21123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-rpss 7702 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-subrg 20486 df-lmod 20775 df-lss 20845 df-sra 21087 df-rgmod 21088 df-lidl 21125 |
| This theorem is referenced by: ssdifidlprm 33436 |
| Copyright terms: Public domain | W3C validator |