Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdifidl Structured version   Visualization version   GIF version

Theorem ssdifidl 33269
Description: Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
ssdifidl.1 𝐵 = (Base‘𝑅)
ssdifidl.2 (𝜑𝑅 ∈ Ring)
ssdifidl.3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
ssdifidl.4 (𝜑𝑆𝐵)
ssdifidl.5 (𝜑 → (𝑆𝐼) = ∅)
ssdifidl.6 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
Assertion
Ref Expression
ssdifidl (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Distinct variable groups:   𝐼,𝑝   𝑃,𝑖,𝑗   𝑅,𝑝   𝑆,𝑝   𝜑,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑝)   𝐵(𝑖,𝑗,𝑝)   𝑃(𝑝)   𝑅(𝑖,𝑗)   𝑆(𝑖,𝑗)   𝐼(𝑖,𝑗)

Proof of Theorem ssdifidl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ineq2 4204 . . . . . . 7 (𝑝 = 𝐼 → (𝑆𝑝) = (𝑆𝐼))
21eqeq1d 2727 . . . . . 6 (𝑝 = 𝐼 → ((𝑆𝑝) = ∅ ↔ (𝑆𝐼) = ∅))
3 sseq2 4003 . . . . . 6 (𝑝 = 𝐼 → (𝐼𝑝𝐼𝐼))
42, 3anbi12d 630 . . . . 5 (𝑝 = 𝐼 → (((𝑆𝑝) = ∅ ∧ 𝐼𝑝) ↔ ((𝑆𝐼) = ∅ ∧ 𝐼𝐼)))
5 ssdifidl.3 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
6 ssdifidl.5 . . . . . 6 (𝜑 → (𝑆𝐼) = ∅)
7 ssidd 4000 . . . . . 6 (𝜑𝐼𝐼)
86, 7jca 510 . . . . 5 (𝜑 → ((𝑆𝐼) = ∅ ∧ 𝐼𝐼))
94, 5, 8elrabd 3681 . . . 4 (𝜑𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)})
10 ssdifidl.6 . . . 4 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
119, 10eleqtrrdi 2836 . . 3 (𝜑𝐼𝑃)
1211ne0d 4335 . 2 (𝜑𝑃 ≠ ∅)
13 ssdifidl.1 . . . . 5 𝐵 = (Base‘𝑅)
14 ssdifidl.2 . . . . . 6 (𝜑𝑅 ∈ Ring)
1514adantr 479 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑅 ∈ Ring)
165adantr 479 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅))
17 ssdifidl.4 . . . . . 6 (𝜑𝑆𝐵)
1817adantr 479 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑆𝐵)
196adantr 479 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → (𝑆𝐼) = ∅)
20 simpr1 1191 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
21 simpr2 1192 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ≠ ∅)
22 simpr3 1193 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → [] Or 𝑧)
2313, 15, 16, 18, 19, 10, 20, 21, 22ssdifidllem 33268 . . . 4 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
2423ex 411 . . 3 (𝜑 → ((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
2524alrimiv 1922 . 2 (𝜑 → ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
26 fvex 6909 . . . 4 (LIdeal‘𝑅) ∈ V
2710, 26rabex2 5337 . . 3 𝑃 ∈ V
2827zornn0 10533 . 2 ((𝑃 ≠ ∅ ∧ ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃)) → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
2912, 25, 28syl2anc 582 1 (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084  wal 1531   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  {crab 3418  cin 3943  wss 3944  wpss 3945  c0 4322   cuni 4909   Or wor 5589  cfv 6549   [] crpss 7728  Basecbs 17183  Ringcrg 20185  LIdealclidl 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-ac2 10488  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-rpss 7729  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9926  df-card 9964  df-ac 10141  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-subrg 20520  df-lmod 20757  df-lss 20828  df-sra 21070  df-rgmod 21071  df-lidl 21116
This theorem is referenced by:  ssdifidlprm  33270
  Copyright terms: Public domain W3C validator