![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdifidl | Structured version Visualization version GIF version |
Description: Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
ssdifidl.1 | ⊢ 𝐵 = (Base‘𝑅) |
ssdifidl.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ssdifidl.3 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
ssdifidl.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
ssdifidl.5 | ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) |
ssdifidl.6 | ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} |
Ref | Expression |
---|---|
ssdifidl | ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4235 | . . . . . . 7 ⊢ (𝑝 = 𝐼 → (𝑆 ∩ 𝑝) = (𝑆 ∩ 𝐼)) | |
2 | 1 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑝 = 𝐼 → ((𝑆 ∩ 𝑝) = ∅ ↔ (𝑆 ∩ 𝐼) = ∅)) |
3 | sseq2 4035 | . . . . . 6 ⊢ (𝑝 = 𝐼 → (𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ 𝐼)) | |
4 | 2, 3 | anbi12d 631 | . . . . 5 ⊢ (𝑝 = 𝐼 → (((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝) ↔ ((𝑆 ∩ 𝐼) = ∅ ∧ 𝐼 ⊆ 𝐼))) |
5 | ssdifidl.3 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
6 | ssdifidl.5 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) | |
7 | ssidd 4032 | . . . . . 6 ⊢ (𝜑 → 𝐼 ⊆ 𝐼) | |
8 | 6, 7 | jca 511 | . . . . 5 ⊢ (𝜑 → ((𝑆 ∩ 𝐼) = ∅ ∧ 𝐼 ⊆ 𝐼)) |
9 | 4, 5, 8 | elrabd 3710 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)}) |
10 | ssdifidl.6 | . . . 4 ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} | |
11 | 9, 10 | eleqtrrdi 2855 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑃) |
12 | 11 | ne0d 4365 | . 2 ⊢ (𝜑 → 𝑃 ≠ ∅) |
13 | ssdifidl.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
14 | ssdifidl.2 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑅 ∈ Ring) |
16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅)) |
17 | ssdifidl.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑆 ⊆ 𝐵) |
19 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → (𝑆 ∩ 𝐼) = ∅) |
20 | simpr1 1194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑧 ⊆ 𝑃) | |
21 | simpr2 1195 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑧 ≠ ∅) | |
22 | simpr3 1196 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → [⊊] Or 𝑧) | |
23 | 13, 15, 16, 18, 19, 10, 20, 21, 22 | ssdifidllem 33449 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → ∪ 𝑧 ∈ 𝑃) |
24 | 23 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) |
25 | 24 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑧((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) |
26 | fvex 6933 | . . . 4 ⊢ (LIdeal‘𝑅) ∈ V | |
27 | 10, 26 | rabex2 5359 | . . 3 ⊢ 𝑃 ∈ V |
28 | 27 | zornn0 10577 | . 2 ⊢ ((𝑃 ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
29 | 12, 25, 28 | syl2anc 583 | 1 ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 {crab 3443 ∩ cin 3975 ⊆ wss 3976 ⊊ wpss 3977 ∅c0 4352 ∪ cuni 4931 Or wor 5606 ‘cfv 6573 [⊊] crpss 7757 Basecbs 17258 Ringcrg 20260 LIdealclidl 21239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rpss 7758 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-subrg 20597 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-lidl 21241 |
This theorem is referenced by: ssdifidlprm 33451 |
Copyright terms: Public domain | W3C validator |