Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdifidl Structured version   Visualization version   GIF version

Theorem ssdifidl 33465
Description: Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.)
Hypotheses
Ref Expression
ssdifidl.1 𝐵 = (Base‘𝑅)
ssdifidl.2 (𝜑𝑅 ∈ Ring)
ssdifidl.3 (𝜑𝐼 ∈ (LIdeal‘𝑅))
ssdifidl.4 (𝜑𝑆𝐵)
ssdifidl.5 (𝜑 → (𝑆𝐼) = ∅)
ssdifidl.6 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
Assertion
Ref Expression
ssdifidl (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Distinct variable groups:   𝐼,𝑝   𝑃,𝑖,𝑗   𝑅,𝑝   𝑆,𝑝   𝜑,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑝)   𝐵(𝑖,𝑗,𝑝)   𝑃(𝑝)   𝑅(𝑖,𝑗)   𝑆(𝑖,𝑗)   𝐼(𝑖,𝑗)

Proof of Theorem ssdifidl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ineq2 4222 . . . . . . 7 (𝑝 = 𝐼 → (𝑆𝑝) = (𝑆𝐼))
21eqeq1d 2737 . . . . . 6 (𝑝 = 𝐼 → ((𝑆𝑝) = ∅ ↔ (𝑆𝐼) = ∅))
3 sseq2 4022 . . . . . 6 (𝑝 = 𝐼 → (𝐼𝑝𝐼𝐼))
42, 3anbi12d 632 . . . . 5 (𝑝 = 𝐼 → (((𝑆𝑝) = ∅ ∧ 𝐼𝑝) ↔ ((𝑆𝐼) = ∅ ∧ 𝐼𝐼)))
5 ssdifidl.3 . . . . 5 (𝜑𝐼 ∈ (LIdeal‘𝑅))
6 ssdifidl.5 . . . . . 6 (𝜑 → (𝑆𝐼) = ∅)
7 ssidd 4019 . . . . . 6 (𝜑𝐼𝐼)
86, 7jca 511 . . . . 5 (𝜑 → ((𝑆𝐼) = ∅ ∧ 𝐼𝐼))
94, 5, 8elrabd 3697 . . . 4 (𝜑𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)})
10 ssdifidl.6 . . . 4 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆𝑝) = ∅ ∧ 𝐼𝑝)}
119, 10eleqtrrdi 2850 . . 3 (𝜑𝐼𝑃)
1211ne0d 4348 . 2 (𝜑𝑃 ≠ ∅)
13 ssdifidl.1 . . . . 5 𝐵 = (Base‘𝑅)
14 ssdifidl.2 . . . . . 6 (𝜑𝑅 ∈ Ring)
1514adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑅 ∈ Ring)
165adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅))
17 ssdifidl.4 . . . . . 6 (𝜑𝑆𝐵)
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑆𝐵)
196adantr 480 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → (𝑆𝐼) = ∅)
20 simpr1 1193 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
21 simpr2 1194 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧 ≠ ∅)
22 simpr3 1195 . . . . 5 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → [] Or 𝑧)
2313, 15, 16, 18, 19, 10, 20, 21, 22ssdifidllem 33464 . . . 4 ((𝜑 ∧ (𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧)) → 𝑧𝑃)
2423ex 412 . . 3 (𝜑 → ((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
2524alrimiv 1925 . 2 (𝜑 → ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃))
26 fvex 6920 . . . 4 (LIdeal‘𝑅) ∈ V
2710, 26rabex2 5347 . . 3 𝑃 ∈ V
2827zornn0 10546 . 2 ((𝑃 ≠ ∅ ∧ ∀𝑧((𝑧𝑃𝑧 ≠ ∅ ∧ [] Or 𝑧) → 𝑧𝑃)) → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
2912, 25, 28syl2anc 584 1 (𝜑 → ∃𝑖𝑃𝑗𝑃 ¬ 𝑖𝑗)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wal 1535   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  cin 3962  wss 3963  wpss 3964  c0 4339   cuni 4912   Or wor 5596  cfv 6563   [] crpss 7741  Basecbs 17245  Ringcrg 20251  LIdealclidl 21234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-rpss 7742  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrg 20587  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236
This theorem is referenced by:  ssdifidlprm  33466
  Copyright terms: Public domain W3C validator