![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssdifidl | Structured version Visualization version GIF version |
Description: Let 𝑅 be a ring, and let 𝐼 be an ideal of 𝑅 disjoint with a set 𝑆. Then there exists an ideal 𝑖, maximal among the set 𝑃 of ideals containing 𝐼 and disjoint with 𝑆. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
Ref | Expression |
---|---|
ssdifidl.1 | ⊢ 𝐵 = (Base‘𝑅) |
ssdifidl.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ssdifidl.3 | ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) |
ssdifidl.4 | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
ssdifidl.5 | ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) |
ssdifidl.6 | ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} |
Ref | Expression |
---|---|
ssdifidl | ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4222 | . . . . . . 7 ⊢ (𝑝 = 𝐼 → (𝑆 ∩ 𝑝) = (𝑆 ∩ 𝐼)) | |
2 | 1 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑝 = 𝐼 → ((𝑆 ∩ 𝑝) = ∅ ↔ (𝑆 ∩ 𝐼) = ∅)) |
3 | sseq2 4022 | . . . . . 6 ⊢ (𝑝 = 𝐼 → (𝐼 ⊆ 𝑝 ↔ 𝐼 ⊆ 𝐼)) | |
4 | 2, 3 | anbi12d 632 | . . . . 5 ⊢ (𝑝 = 𝐼 → (((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝) ↔ ((𝑆 ∩ 𝐼) = ∅ ∧ 𝐼 ⊆ 𝐼))) |
5 | ssdifidl.3 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) | |
6 | ssdifidl.5 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∩ 𝐼) = ∅) | |
7 | ssidd 4019 | . . . . . 6 ⊢ (𝜑 → 𝐼 ⊆ 𝐼) | |
8 | 6, 7 | jca 511 | . . . . 5 ⊢ (𝜑 → ((𝑆 ∩ 𝐼) = ∅ ∧ 𝐼 ⊆ 𝐼)) |
9 | 4, 5, 8 | elrabd 3697 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)}) |
10 | ssdifidl.6 | . . . 4 ⊢ 𝑃 = {𝑝 ∈ (LIdeal‘𝑅) ∣ ((𝑆 ∩ 𝑝) = ∅ ∧ 𝐼 ⊆ 𝑝)} | |
11 | 9, 10 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑃) |
12 | 11 | ne0d 4348 | . 2 ⊢ (𝜑 → 𝑃 ≠ ∅) |
13 | ssdifidl.1 | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
14 | ssdifidl.2 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑅 ∈ Ring) |
16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝐼 ∈ (LIdeal‘𝑅)) |
17 | ssdifidl.4 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑆 ⊆ 𝐵) |
19 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → (𝑆 ∩ 𝐼) = ∅) |
20 | simpr1 1193 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑧 ⊆ 𝑃) | |
21 | simpr2 1194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → 𝑧 ≠ ∅) | |
22 | simpr3 1195 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → [⊊] Or 𝑧) | |
23 | 13, 15, 16, 18, 19, 10, 20, 21, 22 | ssdifidllem 33464 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧)) → ∪ 𝑧 ∈ 𝑃) |
24 | 23 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) |
25 | 24 | alrimiv 1925 | . 2 ⊢ (𝜑 → ∀𝑧((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) |
26 | fvex 6920 | . . . 4 ⊢ (LIdeal‘𝑅) ∈ V | |
27 | 10, 26 | rabex2 5347 | . . 3 ⊢ 𝑃 ∈ V |
28 | 27 | zornn0 10546 | . 2 ⊢ ((𝑃 ≠ ∅ ∧ ∀𝑧((𝑧 ⊆ 𝑃 ∧ 𝑧 ≠ ∅ ∧ [⊊] Or 𝑧) → ∪ 𝑧 ∈ 𝑃)) → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
29 | 12, 25, 28 | syl2anc 584 | 1 ⊢ (𝜑 → ∃𝑖 ∈ 𝑃 ∀𝑗 ∈ 𝑃 ¬ 𝑖 ⊊ 𝑗) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3433 ∩ cin 3962 ⊆ wss 3963 ⊊ wpss 3964 ∅c0 4339 ∪ cuni 4912 Or wor 5596 ‘cfv 6563 [⊊] crpss 7741 Basecbs 17245 Ringcrg 20251 LIdealclidl 21234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-ac2 10501 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-rpss 7742 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-ac 10154 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-subrg 20587 df-lmod 20877 df-lss 20948 df-sra 21190 df-rgmod 21191 df-lidl 21236 |
This theorem is referenced by: ssdifidlprm 33466 |
Copyright terms: Public domain | W3C validator |