| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones23 | Structured version Visualization version GIF version | ||
| Description: Non-exhaustive sticks and stones. (Contributed by metakunt, 7-May-2025.) |
| Ref | Expression |
|---|---|
| sticksstones23.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones23.2 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
| sticksstones23.3 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| sticksstones23.4 | ⊢ 𝐴 = {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} |
| Ref | Expression |
|---|---|
| sticksstones23 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones23.4 | . . . . 5 ⊢ 𝐴 = {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁}) |
| 3 | df-rab 3396 | . . . . . 6 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} = {𝑓 ∣ (𝑓 ∈ (ℕ0 ↑m 𝑆) ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} = {𝑓 ∣ (𝑓 ∈ (ℕ0 ↑m 𝑆) ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
| 5 | nn0ex 12387 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
| 6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℕ0 ∈ V) |
| 7 | sticksstones23.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
| 8 | elmapg 8763 | . . . . . . . 8 ⊢ ((ℕ0 ∈ V ∧ 𝑆 ∈ Fin) → (𝑓 ∈ (ℕ0 ↑m 𝑆) ↔ 𝑓:𝑆⟶ℕ0)) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑓 ∈ (ℕ0 ↑m 𝑆) ↔ 𝑓:𝑆⟶ℕ0)) |
| 10 | 9 | anbi1d 631 | . . . . . 6 ⊢ (𝜑 → ((𝑓 ∈ (ℕ0 ↑m 𝑆) ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁))) |
| 11 | 10 | abbidv 2797 | . . . . 5 ⊢ (𝜑 → {𝑓 ∣ (𝑓 ∈ (ℕ0 ↑m 𝑆) ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
| 12 | 4, 11 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
| 13 | 2, 12 | eqtrd 2766 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
| 14 | 13 | fveq2d 6826 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)})) |
| 15 | sticksstones23.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 16 | sticksstones23.3 | . . 3 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 17 | eqid 2731 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} | |
| 18 | 15, 7, 16, 17 | sticksstones22 42260 | . 2 ⊢ (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |
| 19 | 14, 18 | eqtrd 2766 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ≠ wne 2928 {crab 3395 Vcvv 3436 ∅c0 4280 class class class wbr 5089 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 + caddc 11009 ≤ cle 11147 ℕ0cn0 12381 Ccbc 14209 ♯chash 14237 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ico 13251 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: aks6d1c6lem3 42264 |
| Copyright terms: Public domain | W3C validator |