| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sticksstones23 | Structured version Visualization version GIF version | ||
| Description: Non-exhaustive sticks and stones. (Contributed by metakunt, 7-May-2025.) |
| Ref | Expression |
|---|---|
| sticksstones23.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| sticksstones23.2 | ⊢ (𝜑 → 𝑆 ∈ Fin) |
| sticksstones23.3 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| sticksstones23.4 | ⊢ 𝐴 = {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} |
| Ref | Expression |
|---|---|
| sticksstones23 | ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sticksstones23.4 | . . . . 5 ⊢ 𝐴 = {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐴 = {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁}) |
| 3 | df-rab 3420 | . . . . . 6 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} = {𝑓 ∣ (𝑓 ∈ (ℕ0 ↑m 𝑆) ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} = {𝑓 ∣ (𝑓 ∈ (ℕ0 ↑m 𝑆) ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
| 5 | nn0ex 12514 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
| 6 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℕ0 ∈ V) |
| 7 | sticksstones23.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
| 8 | elmapg 8860 | . . . . . . . 8 ⊢ ((ℕ0 ∈ V ∧ 𝑆 ∈ Fin) → (𝑓 ∈ (ℕ0 ↑m 𝑆) ↔ 𝑓:𝑆⟶ℕ0)) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑓 ∈ (ℕ0 ↑m 𝑆) ↔ 𝑓:𝑆⟶ℕ0)) |
| 10 | 9 | anbi1d 631 | . . . . . 6 ⊢ (𝜑 → ((𝑓 ∈ (ℕ0 ↑m 𝑆) ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁))) |
| 11 | 10 | abbidv 2800 | . . . . 5 ⊢ (𝜑 → {𝑓 ∣ (𝑓 ∈ (ℕ0 ↑m 𝑆) ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
| 12 | 4, 11 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑m 𝑆) ∣ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
| 13 | 2, 12 | eqtrd 2769 | . . 3 ⊢ (𝜑 → 𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) |
| 14 | 13 | fveq2d 6889 | . 2 ⊢ (𝜑 → (♯‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)})) |
| 15 | sticksstones23.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 16 | sticksstones23.3 | . . 3 ⊢ (𝜑 → 𝑆 ≠ ∅) | |
| 17 | eqid 2734 | . . 3 ⊢ {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)} | |
| 18 | 15, 7, 16, 17 | sticksstones22 42103 | . 2 ⊢ (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖 ∈ 𝑆 (𝑓‘𝑖) ≤ 𝑁)}) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |
| 19 | 14, 18 | eqtrd 2769 | 1 ⊢ (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ≠ wne 2931 {crab 3419 Vcvv 3463 ∅c0 4313 class class class wbr 5123 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ↑m cmap 8847 Fincfn 8966 + caddc 11139 ≤ cle 11277 ℕ0cn0 12508 Ccbc 14322 ♯chash 14350 Σcsu 15703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-sup 9463 df-inf 9464 df-oi 9531 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-n0 12509 df-z 12596 df-uz 12860 df-rp 13016 df-ico 13374 df-fz 13529 df-fzo 13676 df-seq 14024 df-exp 14084 df-fac 14294 df-bc 14323 df-hash 14351 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-clim 15505 df-sum 15704 |
| This theorem is referenced by: aks6d1c6lem3 42107 |
| Copyright terms: Public domain | W3C validator |