Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sticksstones23 Structured version   Visualization version   GIF version

Theorem sticksstones23 42075
Description: Non-exhaustive sticks and stones. (Contributed by metakunt, 7-May-2025.)
Hypotheses
Ref Expression
sticksstones23.1 (𝜑𝑁 ∈ ℕ0)
sticksstones23.2 (𝜑𝑆 ∈ Fin)
sticksstones23.3 (𝜑𝑆 ≠ ∅)
sticksstones23.4 𝐴 = {𝑓 ∈ (ℕ0m 𝑆) ∣ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁}
Assertion
Ref Expression
sticksstones23 (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
Distinct variable groups:   𝑓,𝑁   𝑆,𝑓,𝑖   𝜑,𝑓,𝑖
Allowed substitution hints:   𝐴(𝑓,𝑖)   𝑁(𝑖)

Proof of Theorem sticksstones23
StepHypRef Expression
1 sticksstones23.4 . . . . 5 𝐴 = {𝑓 ∈ (ℕ0m 𝑆) ∣ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁}
21a1i 11 . . . 4 (𝜑𝐴 = {𝑓 ∈ (ℕ0m 𝑆) ∣ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁})
3 df-rab 3439 . . . . . 6 {𝑓 ∈ (ℕ0m 𝑆) ∣ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁} = {𝑓 ∣ (𝑓 ∈ (ℕ0m 𝑆) ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}
43a1i 11 . . . . 5 (𝜑 → {𝑓 ∈ (ℕ0m 𝑆) ∣ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁} = {𝑓 ∣ (𝑓 ∈ (ℕ0m 𝑆) ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)})
5 nn0ex 12555 . . . . . . . . 9 0 ∈ V
65a1i 11 . . . . . . . 8 (𝜑 → ℕ0 ∈ V)
7 sticksstones23.2 . . . . . . . 8 (𝜑𝑆 ∈ Fin)
8 elmapg 8893 . . . . . . . 8 ((ℕ0 ∈ V ∧ 𝑆 ∈ Fin) → (𝑓 ∈ (ℕ0m 𝑆) ↔ 𝑓:𝑆⟶ℕ0))
96, 7, 8syl2anc 583 . . . . . . 7 (𝜑 → (𝑓 ∈ (ℕ0m 𝑆) ↔ 𝑓:𝑆⟶ℕ0))
109anbi1d 630 . . . . . 6 (𝜑 → ((𝑓 ∈ (ℕ0m 𝑆) ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁) ↔ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)))
1110abbidv 2805 . . . . 5 (𝜑 → {𝑓 ∣ (𝑓 ∈ (ℕ0m 𝑆) ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)})
124, 11eqtrd 2774 . . . 4 (𝜑 → {𝑓 ∈ (ℕ0m 𝑆) ∣ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)})
132, 12eqtrd 2774 . . 3 (𝜑𝐴 = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)})
1413fveq2d 6923 . 2 (𝜑 → (♯‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}))
15 sticksstones23.1 . . 3 (𝜑𝑁 ∈ ℕ0)
16 sticksstones23.3 . . 3 (𝜑𝑆 ≠ ∅)
17 eqid 2734 . . 3 {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)} = {𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}
1815, 7, 16, 17sticksstones22 42074 . 2 (𝜑 → (♯‘{𝑓 ∣ (𝑓:𝑆⟶ℕ0 ∧ Σ𝑖𝑆 (𝑓𝑖) ≤ 𝑁)}) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
1914, 18eqtrd 2774 1 (𝜑 → (♯‘𝐴) = ((𝑁 + (♯‘𝑆))C(♯‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2103  {cab 2711  wne 2942  {crab 3438  Vcvv 3482  c0 4347   class class class wbr 5169  wf 6568  cfv 6572  (class class class)co 7445  m cmap 8880  Fincfn 8999   + caddc 11183  cle 11321  0cn0 12549  Ccbc 14347  chash 14375  Σcsu 15730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257  ax-pre-sup 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-isom 6581  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-oadd 8522  df-er 8759  df-map 8882  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003  df-sup 9507  df-inf 9508  df-oi 9575  df-dju 9966  df-card 10004  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-div 11944  df-nn 12290  df-2 12352  df-3 12353  df-n0 12550  df-z 12636  df-uz 12900  df-rp 13054  df-ico 13409  df-fz 13564  df-fzo 13708  df-seq 14049  df-exp 14109  df-fac 14319  df-bc 14348  df-hash 14376  df-cj 15144  df-re 15145  df-im 15146  df-sqrt 15280  df-abs 15281  df-clim 15530  df-sum 15731
This theorem is referenced by:  aks6d1c6lem3  42078
  Copyright terms: Public domain W3C validator