Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem1 42211
Description: Lemma for claim 6, deduce exact degree of the polynomial. (Contributed by metakunt, 7-May-2025.)
Hypotheses
Ref Expression
aks6d1c6.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6.2 𝑃 = (chr‘𝐾)
aks6d1c6.3 (𝜑𝐾 ∈ Field)
aks6d1c6.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6.7 (𝜑𝑃𝑁)
aks6d1c6.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6.9 (𝜑𝐴 < 𝑃)
aks6d1c6.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c6.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem1.1 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
Assertion
Ref Expression
aks6d1c6lem1 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑡,𝐴,𝑖   𝑔,𝐾,𝑖   𝑡,𝐾   𝑈,𝑔,𝑖   𝑡,𝑈   𝜑,𝑔,𝑖   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐴(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑃(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑅(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑈(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐸(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐺(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐾(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑀(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑁(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem1
StepHypRef Expression
1 aks6d1c6.10 . . . . 5 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
21a1i 11 . . . 4 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
32fveq1d 6824 . . 3 (𝜑 → (𝐺𝑈) = ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈))
43fveq2d 6826 . 2 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)))
5 eqidd 2732 . . . . 5 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
6 simplr 768 . . . . . . . . 9 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝑈)
76fveq1d 6824 . . . . . . . 8 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝑈𝑖))
87oveq1d 7361 . . . . . . 7 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))
98mpteq2dva 5182 . . . . . 6 ((𝜑𝑔 = 𝑈) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
109oveq2d 7362 . . . . 5 ((𝜑𝑔 = 𝑈) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem1.1 . . . . 5 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
12 ovexd 7381 . . . . 5 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
135, 10, 11, 12fvmptd 6936 . . . 4 (𝜑 → ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
1413fveq2d 6826 . . 3 (𝜑 → ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
15 aks6d1c6.3 . . . . . . 7 (𝜑𝐾 ∈ Field)
16 fldidom 20686 . . . . . . 7 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
1715, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ IDomn)
18 fzfid 13880 . . . . . 6 (𝜑 → (0...𝐴) ∈ Fin)
19 eqid 2731 . . . . . . . . . 10 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
20 eqid 2731 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
2119, 20mgpbas 20063 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
22 eqid 2731 . . . . . . . . 9 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
2315fldcrngd 20657 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
24 crngring 20163 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
26 eqid 2731 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1𝐾)
2726ply1ring 22160 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (Poly1𝐾) ∈ Ring)
2825, 27syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝐾) ∈ Ring)
2919ringmgp 20157 . . . . . . . . . . 11 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3028, 29syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
32 nn0ex 12387 . . . . . . . . . . . . . 14 0 ∈ V
3332a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
34 ovexd 7381 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) ∈ V)
3533, 34elmapd 8764 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∈ (ℕ0m (0...𝐴)) ↔ 𝑈:(0...𝐴)⟶ℕ0))
3611, 35mpbid 232 . . . . . . . . . . 11 (𝜑𝑈:(0...𝐴)⟶ℕ0)
3736adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑈:(0...𝐴)⟶ℕ0)
38 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑖 ∈ (0...𝐴))
3937, 38ffvelcdmd 7018 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑈𝑖) ∈ ℕ0)
40 2fveq3 6827 . . . . . . . . . . . 12 (𝑡 = 𝑖 → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))
4140oveq2d 7362 . . . . . . . . . . 11 (𝑡 = 𝑖 → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))
4241eleq1d 2816 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾))))
43 ringmnd 20161 . . . . . . . . . . . . . . 15 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ Mnd)
4428, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Mnd)
4544adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
4625adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
47 eqid 2731 . . . . . . . . . . . . . . 15 (var1𝐾) = (var1𝐾)
4847, 26, 20vr1cl 22130 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
4946, 48syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
50 eqid 2731 . . . . . . . . . . . . . . . . . . 19 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
5150zrhrhm 21448 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
5225, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
53 zringbas 21390 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
54 eqid 2731 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
5553, 54rhmf 20402 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5652, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5756adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
58 elfzelz 13424 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0...𝐴) → 𝑡 ∈ ℤ)
5958adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ ℤ)
6057, 59ffvelcdmd 7018 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾))
61 eqid 2731 . . . . . . . . . . . . . . 15 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
6226, 61, 54, 20ply1sclcl 22200 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
6346, 60, 62syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
64 eqid 2731 . . . . . . . . . . . . . 14 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
6520, 64mndcl 18650 . . . . . . . . . . . . 13 (((Poly1𝐾) ∈ Mnd ∧ (var1𝐾) ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾))) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6645, 49, 63, 65syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6766ralrimiva 3124 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6942, 68, 38rspcdva 3573 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
7021, 22, 31, 39, 69mulgnn0cld 19008 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
7126ply1idom 26057 . . . . . . . . . . 11 (𝐾 ∈ IDomn → (Poly1𝐾) ∈ IDomn)
7217, 71syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ IDomn)
7372adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ IDomn)
7441neeq1d 2987 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾))))
75 eqid 2731 . . . . . . . . . . . . . . . 16 (deg1𝐾) = (deg1𝐾)
7675, 26, 20deg1xrcl 26014 . . . . . . . . . . . . . . . . . . 19 (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
7763, 76syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
78 0xr 11159 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
7978a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 ∈ ℝ*)
80 1xr 11171 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℝ*)
8275, 26, 54, 61deg1sclle 26044 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
8346, 60, 82syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
84 0lt1 11639 . . . . . . . . . . . . . . . . . . 19 0 < 1
8584a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 < 1)
8677, 79, 81, 83, 85xrlelttrd 13059 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < 1)
8721, 22mulg1 18994 . . . . . . . . . . . . . . . . . . . . 21 ((var1𝐾) ∈ (Base‘(Poly1𝐾)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8849, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0...𝐴)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8988eqcomd 2737 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) = (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))
9089fveq2d 6826 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(var1𝐾)) = ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
91 isfld 20655 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
92 drngnzr 20663 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing) → 𝐾 ∈ NzRing)
9491, 93sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ Field → 𝐾 ∈ NzRing)
9515, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ NzRing)
9695adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ NzRing)
97 1nn0 12397 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
9897a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℕ0)
9975, 26, 47, 19, 22deg1pw 26053 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ NzRing ∧ 1 ∈ ℕ0) → ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10096, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10190, 100eqtr2d 2767 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → 1 = ((deg1𝐾)‘(var1𝐾)))
10286, 101breqtrd 5115 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < ((deg1𝐾)‘(var1𝐾)))
10326, 75, 46, 20, 64, 49, 63, 102deg1add 26035 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = ((deg1𝐾)‘(var1𝐾)))
10490, 100eqtrd 2766 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(var1𝐾)) = 1)
105103, 104eqtrd 2766 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = 1)
106105, 98eqeltrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0)
107 eqid 2731 . . . . . . . . . . . . . . 15 (0g‘(Poly1𝐾)) = (0g‘(Poly1𝐾))
10875, 26, 107, 20deg1nn0clb 26022 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾))) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
10946, 66, 108syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
110106, 109mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
111110ralrimiva 3124 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
112111adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
11374, 112, 38rspcdva 3573 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾)))
11473, 69, 113, 39, 22idomnnzpownz 42173 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾)))
11570, 114jca 511 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
116115ralrimiva 3124 . . . . . 6 (𝜑 → ∀𝑖 ∈ (0...𝐴)(((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
11717, 18, 116deg1gprod 42181 . . . . 5 (𝜑 → (((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) ∧ 0 ≤ ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))))
118117simpld 494 . . . 4 (𝜑 → ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)))
119 eqidd 2732 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
120 simpr 484 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → 𝑖 = 𝑡)
121120fveq2d 6826 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → (𝑈𝑖) = (𝑈𝑡))
122120fveq2d 6826 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((ℤRHom‘𝐾)‘𝑖) = ((ℤRHom‘𝐾)‘𝑡))
123122fveq2d 6826 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))
124123oveq2d 7362 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))
125121, 124oveq12d 7364 . . . . . . . 8 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
126 simpr 484 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ (0...𝐴))
127 ovexd 7381 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ V)
128119, 125, 126, 127fvmptd 6936 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
129128fveq2d 6826 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
13017adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ IDomn)
13136ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℕ0)
132130, 66, 110, 131, 22, 75deg1pow 42182 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
133105oveq2d 7362 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · 1))
134131nn0cnd 12444 . . . . . . . . 9 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℂ)
135134mulridd 11129 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · 1) = (𝑈𝑡))
136133, 135eqtrd 2766 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
137132, 136eqtrd 2766 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
138129, 137eqtrd 2766 . . . . 5 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = (𝑈𝑡))
139138sumeq2dv 15609 . . . 4 (𝜑 → Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
140118, 139eqtrd 2766 . . 3 (𝜑 → ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
14114, 140eqtrd 2766 . 2 (𝜑 → ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
1424, 141eqtrd 2766 1 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436   class class class wbr 5089  {copab 5151  cmpt 5170   × cxp 5612  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  0cc0 11006  1c1 11007   · cmul 11011  *cxr 11145   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  ...cfz 13407  cexp 13968  chash 14237  Σcsu 15593  cdvds 16163   gcd cgcd 16405  cprime 16582  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18642  .gcmg 18980  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387   RingIso crs 20388  NzRingcnzr 20427  IDomncidom 20608  DivRingcdr 20644  Fieldcfield 20645  ringczring 21383  ℤRHomczrh 21436  chrcchr 21438  ℤ/nczn 21439  algSccascl 21789  var1cv1 22088  Poly1cpl1 22089  eval1ce1 22229  deg1cdg1 25986   PrimRoots cprimroots 42132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20795  df-lss 20865  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-mdeg 25987  df-deg1 25988
This theorem is referenced by:  aks6d1c6lem3  42213
  Copyright terms: Public domain W3C validator