Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem1 42158
Description: Lemma for claim 6, deduce exact degree of the polynomial. (Contributed by metakunt, 7-May-2025.)
Hypotheses
Ref Expression
aks6d1c6.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6.2 𝑃 = (chr‘𝐾)
aks6d1c6.3 (𝜑𝐾 ∈ Field)
aks6d1c6.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6.7 (𝜑𝑃𝑁)
aks6d1c6.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6.9 (𝜑𝐴 < 𝑃)
aks6d1c6.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c6.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem1.1 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
Assertion
Ref Expression
aks6d1c6lem1 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑡,𝐴,𝑖   𝑔,𝐾,𝑖   𝑡,𝐾   𝑈,𝑔,𝑖   𝑡,𝑈   𝜑,𝑔,𝑖   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐴(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑃(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑅(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑈(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐸(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐺(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐾(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑀(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑁(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem1
StepHypRef Expression
1 aks6d1c6.10 . . . . 5 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
21a1i 11 . . . 4 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
32fveq1d 6860 . . 3 (𝜑 → (𝐺𝑈) = ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈))
43fveq2d 6862 . 2 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)))
5 eqidd 2730 . . . . 5 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
6 simplr 768 . . . . . . . . 9 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝑈)
76fveq1d 6860 . . . . . . . 8 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝑈𝑖))
87oveq1d 7402 . . . . . . 7 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))
98mpteq2dva 5200 . . . . . 6 ((𝜑𝑔 = 𝑈) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
109oveq2d 7403 . . . . 5 ((𝜑𝑔 = 𝑈) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem1.1 . . . . 5 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
12 ovexd 7422 . . . . 5 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
135, 10, 11, 12fvmptd 6975 . . . 4 (𝜑 → ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
1413fveq2d 6862 . . 3 (𝜑 → ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
15 aks6d1c6.3 . . . . . . 7 (𝜑𝐾 ∈ Field)
16 fldidom 20680 . . . . . . 7 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
1715, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ IDomn)
18 fzfid 13938 . . . . . 6 (𝜑 → (0...𝐴) ∈ Fin)
19 eqid 2729 . . . . . . . . . 10 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
20 eqid 2729 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
2119, 20mgpbas 20054 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
22 eqid 2729 . . . . . . . . 9 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
2315fldcrngd 20651 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
24 crngring 20154 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
26 eqid 2729 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1𝐾)
2726ply1ring 22132 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (Poly1𝐾) ∈ Ring)
2825, 27syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝐾) ∈ Ring)
2919ringmgp 20148 . . . . . . . . . . 11 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3028, 29syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
32 nn0ex 12448 . . . . . . . . . . . . . 14 0 ∈ V
3332a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
34 ovexd 7422 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) ∈ V)
3533, 34elmapd 8813 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∈ (ℕ0m (0...𝐴)) ↔ 𝑈:(0...𝐴)⟶ℕ0))
3611, 35mpbid 232 . . . . . . . . . . 11 (𝜑𝑈:(0...𝐴)⟶ℕ0)
3736adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑈:(0...𝐴)⟶ℕ0)
38 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑖 ∈ (0...𝐴))
3937, 38ffvelcdmd 7057 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑈𝑖) ∈ ℕ0)
40 2fveq3 6863 . . . . . . . . . . . 12 (𝑡 = 𝑖 → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))
4140oveq2d 7403 . . . . . . . . . . 11 (𝑡 = 𝑖 → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))
4241eleq1d 2813 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾))))
43 ringmnd 20152 . . . . . . . . . . . . . . 15 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ Mnd)
4428, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Mnd)
4544adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
4625adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
47 eqid 2729 . . . . . . . . . . . . . . 15 (var1𝐾) = (var1𝐾)
4847, 26, 20vr1cl 22102 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
4946, 48syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
50 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
5150zrhrhm 21421 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
5225, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
53 zringbas 21363 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
54 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
5553, 54rhmf 20394 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5652, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5756adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
58 elfzelz 13485 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0...𝐴) → 𝑡 ∈ ℤ)
5958adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ ℤ)
6057, 59ffvelcdmd 7057 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾))
61 eqid 2729 . . . . . . . . . . . . . . 15 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
6226, 61, 54, 20ply1sclcl 22172 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
6346, 60, 62syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
64 eqid 2729 . . . . . . . . . . . . . 14 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
6520, 64mndcl 18669 . . . . . . . . . . . . 13 (((Poly1𝐾) ∈ Mnd ∧ (var1𝐾) ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾))) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6645, 49, 63, 65syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6766ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6942, 68, 38rspcdva 3589 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
7021, 22, 31, 39, 69mulgnn0cld 19027 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
7126ply1idom 26030 . . . . . . . . . . 11 (𝐾 ∈ IDomn → (Poly1𝐾) ∈ IDomn)
7217, 71syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ IDomn)
7372adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ IDomn)
7441neeq1d 2984 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾))))
75 eqid 2729 . . . . . . . . . . . . . . . 16 (deg1𝐾) = (deg1𝐾)
7675, 26, 20deg1xrcl 25987 . . . . . . . . . . . . . . . . . . 19 (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
7763, 76syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
78 0xr 11221 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
7978a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 ∈ ℝ*)
80 1xr 11233 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℝ*)
8275, 26, 54, 61deg1sclle 26017 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
8346, 60, 82syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
84 0lt1 11700 . . . . . . . . . . . . . . . . . . 19 0 < 1
8584a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 < 1)
8677, 79, 81, 83, 85xrlelttrd 13120 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < 1)
8721, 22mulg1 19013 . . . . . . . . . . . . . . . . . . . . 21 ((var1𝐾) ∈ (Base‘(Poly1𝐾)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8849, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0...𝐴)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8988eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) = (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))
9089fveq2d 6862 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(var1𝐾)) = ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
91 isfld 20649 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
92 drngnzr 20657 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing) → 𝐾 ∈ NzRing)
9491, 93sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ Field → 𝐾 ∈ NzRing)
9515, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ NzRing)
9695adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ NzRing)
97 1nn0 12458 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
9897a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℕ0)
9975, 26, 47, 19, 22deg1pw 26026 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ NzRing ∧ 1 ∈ ℕ0) → ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10096, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10190, 100eqtr2d 2765 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → 1 = ((deg1𝐾)‘(var1𝐾)))
10286, 101breqtrd 5133 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < ((deg1𝐾)‘(var1𝐾)))
10326, 75, 46, 20, 64, 49, 63, 102deg1add 26008 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = ((deg1𝐾)‘(var1𝐾)))
10490, 100eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(var1𝐾)) = 1)
105103, 104eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = 1)
106105, 98eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0)
107 eqid 2729 . . . . . . . . . . . . . . 15 (0g‘(Poly1𝐾)) = (0g‘(Poly1𝐾))
10875, 26, 107, 20deg1nn0clb 25995 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾))) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
10946, 66, 108syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
110106, 109mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
111110ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
112111adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
11374, 112, 38rspcdva 3589 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾)))
11473, 69, 113, 39, 22idomnnzpownz 42120 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾)))
11570, 114jca 511 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
116115ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑖 ∈ (0...𝐴)(((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
11717, 18, 116deg1gprod 42128 . . . . 5 (𝜑 → (((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) ∧ 0 ≤ ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))))
118117simpld 494 . . . 4 (𝜑 → ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)))
119 eqidd 2730 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
120 simpr 484 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → 𝑖 = 𝑡)
121120fveq2d 6862 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → (𝑈𝑖) = (𝑈𝑡))
122120fveq2d 6862 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((ℤRHom‘𝐾)‘𝑖) = ((ℤRHom‘𝐾)‘𝑡))
123122fveq2d 6862 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))
124123oveq2d 7403 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))
125121, 124oveq12d 7405 . . . . . . . 8 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
126 simpr 484 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ (0...𝐴))
127 ovexd 7422 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ V)
128119, 125, 126, 127fvmptd 6975 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
129128fveq2d 6862 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
13017adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ IDomn)
13136ffvelcdmda 7056 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℕ0)
132130, 66, 110, 131, 22, 75deg1pow 42129 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
133105oveq2d 7403 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · 1))
134131nn0cnd 12505 . . . . . . . . 9 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℂ)
135134mulridd 11191 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · 1) = (𝑈𝑡))
136133, 135eqtrd 2764 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
137132, 136eqtrd 2764 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
138129, 137eqtrd 2764 . . . . 5 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = (𝑈𝑡))
139138sumeq2dv 15668 . . . 4 (𝜑 → Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
140118, 139eqtrd 2764 . . 3 (𝜑 → ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
14114, 140eqtrd 2764 . 2 (𝜑 → ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
1424, 141eqtrd 2764 1 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  Vcvv 3447   class class class wbr 5107  {copab 5169  cmpt 5188   × cxp 5636  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  0cc0 11068  1c1 11069   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  ...cfz 13468  cexp 14026  chash 14295  Σcsu 15652  cdvds 16222   gcd cgcd 16464  cprime 16641  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143   RingHom crh 20378   RingIso crs 20379  NzRingcnzr 20421  IDomncidom 20602  DivRingcdr 20638  Fieldcfield 20639  ringczring 21356  ℤRHomczrh 21409  chrcchr 21411  ℤ/nczn 21412  algSccascl 21761  var1cv1 22060  Poly1cpl1 22061  eval1ce1 22201  deg1cdg1 25959   PrimRoots cprimroots 42079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-lmod 20768  df-lss 20838  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-mdeg 25960  df-deg1 25961
This theorem is referenced by:  aks6d1c6lem3  42160
  Copyright terms: Public domain W3C validator