Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem1 42131
Description: Lemma for claim 6, deduce exact degree of the polynomial. (Contributed by metakunt, 7-May-2025.)
Hypotheses
Ref Expression
aks6d1c6.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6.2 𝑃 = (chr‘𝐾)
aks6d1c6.3 (𝜑𝐾 ∈ Field)
aks6d1c6.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6.7 (𝜑𝑃𝑁)
aks6d1c6.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6.9 (𝜑𝐴 < 𝑃)
aks6d1c6.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c6.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem1.1 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
Assertion
Ref Expression
aks6d1c6lem1 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑡,𝐴,𝑖   𝑔,𝐾,𝑖   𝑡,𝐾   𝑈,𝑔,𝑖   𝑡,𝑈   𝜑,𝑔,𝑖   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐴(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑃(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑅(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑈(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐸(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐺(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐾(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑀(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑁(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem1
StepHypRef Expression
1 aks6d1c6.10 . . . . 5 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
21a1i 11 . . . 4 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
32fveq1d 6842 . . 3 (𝜑 → (𝐺𝑈) = ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈))
43fveq2d 6844 . 2 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)))
5 eqidd 2730 . . . . 5 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
6 simplr 768 . . . . . . . . 9 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝑈)
76fveq1d 6842 . . . . . . . 8 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝑈𝑖))
87oveq1d 7384 . . . . . . 7 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))
98mpteq2dva 5195 . . . . . 6 ((𝜑𝑔 = 𝑈) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
109oveq2d 7385 . . . . 5 ((𝜑𝑔 = 𝑈) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem1.1 . . . . 5 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
12 ovexd 7404 . . . . 5 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
135, 10, 11, 12fvmptd 6957 . . . 4 (𝜑 → ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
1413fveq2d 6844 . . 3 (𝜑 → ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
15 aks6d1c6.3 . . . . . . 7 (𝜑𝐾 ∈ Field)
16 fldidom 20656 . . . . . . 7 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
1715, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ IDomn)
18 fzfid 13914 . . . . . 6 (𝜑 → (0...𝐴) ∈ Fin)
19 eqid 2729 . . . . . . . . . 10 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
20 eqid 2729 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
2119, 20mgpbas 20030 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
22 eqid 2729 . . . . . . . . 9 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
2315fldcrngd 20627 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
24 crngring 20130 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
26 eqid 2729 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1𝐾)
2726ply1ring 22108 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (Poly1𝐾) ∈ Ring)
2825, 27syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝐾) ∈ Ring)
2919ringmgp 20124 . . . . . . . . . . 11 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3028, 29syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
32 nn0ex 12424 . . . . . . . . . . . . . 14 0 ∈ V
3332a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
34 ovexd 7404 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) ∈ V)
3533, 34elmapd 8790 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∈ (ℕ0m (0...𝐴)) ↔ 𝑈:(0...𝐴)⟶ℕ0))
3611, 35mpbid 232 . . . . . . . . . . 11 (𝜑𝑈:(0...𝐴)⟶ℕ0)
3736adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑈:(0...𝐴)⟶ℕ0)
38 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑖 ∈ (0...𝐴))
3937, 38ffvelcdmd 7039 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑈𝑖) ∈ ℕ0)
40 2fveq3 6845 . . . . . . . . . . . 12 (𝑡 = 𝑖 → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))
4140oveq2d 7385 . . . . . . . . . . 11 (𝑡 = 𝑖 → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))
4241eleq1d 2813 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾))))
43 ringmnd 20128 . . . . . . . . . . . . . . 15 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ Mnd)
4428, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Mnd)
4544adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
4625adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
47 eqid 2729 . . . . . . . . . . . . . . 15 (var1𝐾) = (var1𝐾)
4847, 26, 20vr1cl 22078 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
4946, 48syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
50 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
5150zrhrhm 21397 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
5225, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
53 zringbas 21339 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
54 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
5553, 54rhmf 20370 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5652, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5756adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
58 elfzelz 13461 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0...𝐴) → 𝑡 ∈ ℤ)
5958adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ ℤ)
6057, 59ffvelcdmd 7039 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾))
61 eqid 2729 . . . . . . . . . . . . . . 15 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
6226, 61, 54, 20ply1sclcl 22148 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
6346, 60, 62syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
64 eqid 2729 . . . . . . . . . . . . . 14 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
6520, 64mndcl 18645 . . . . . . . . . . . . 13 (((Poly1𝐾) ∈ Mnd ∧ (var1𝐾) ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾))) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6645, 49, 63, 65syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6766ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6942, 68, 38rspcdva 3586 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
7021, 22, 31, 39, 69mulgnn0cld 19003 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
7126ply1idom 26006 . . . . . . . . . . 11 (𝐾 ∈ IDomn → (Poly1𝐾) ∈ IDomn)
7217, 71syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ IDomn)
7372adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ IDomn)
7441neeq1d 2984 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾))))
75 eqid 2729 . . . . . . . . . . . . . . . 16 (deg1𝐾) = (deg1𝐾)
7675, 26, 20deg1xrcl 25963 . . . . . . . . . . . . . . . . . . 19 (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
7763, 76syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
78 0xr 11197 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
7978a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 ∈ ℝ*)
80 1xr 11209 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℝ*)
8275, 26, 54, 61deg1sclle 25993 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
8346, 60, 82syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
84 0lt1 11676 . . . . . . . . . . . . . . . . . . 19 0 < 1
8584a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 < 1)
8677, 79, 81, 83, 85xrlelttrd 13096 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < 1)
8721, 22mulg1 18989 . . . . . . . . . . . . . . . . . . . . 21 ((var1𝐾) ∈ (Base‘(Poly1𝐾)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8849, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0...𝐴)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8988eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) = (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))
9089fveq2d 6844 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(var1𝐾)) = ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
91 isfld 20625 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
92 drngnzr 20633 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing) → 𝐾 ∈ NzRing)
9491, 93sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ Field → 𝐾 ∈ NzRing)
9515, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ NzRing)
9695adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ NzRing)
97 1nn0 12434 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
9897a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℕ0)
9975, 26, 47, 19, 22deg1pw 26002 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ NzRing ∧ 1 ∈ ℕ0) → ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10096, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10190, 100eqtr2d 2765 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → 1 = ((deg1𝐾)‘(var1𝐾)))
10286, 101breqtrd 5128 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < ((deg1𝐾)‘(var1𝐾)))
10326, 75, 46, 20, 64, 49, 63, 102deg1add 25984 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = ((deg1𝐾)‘(var1𝐾)))
10490, 100eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(var1𝐾)) = 1)
105103, 104eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = 1)
106105, 98eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0)
107 eqid 2729 . . . . . . . . . . . . . . 15 (0g‘(Poly1𝐾)) = (0g‘(Poly1𝐾))
10875, 26, 107, 20deg1nn0clb 25971 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾))) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
10946, 66, 108syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
110106, 109mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
111110ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
112111adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
11374, 112, 38rspcdva 3586 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾)))
11473, 69, 113, 39, 22idomnnzpownz 42093 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾)))
11570, 114jca 511 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
116115ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑖 ∈ (0...𝐴)(((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
11717, 18, 116deg1gprod 42101 . . . . 5 (𝜑 → (((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) ∧ 0 ≤ ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))))
118117simpld 494 . . . 4 (𝜑 → ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)))
119 eqidd 2730 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
120 simpr 484 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → 𝑖 = 𝑡)
121120fveq2d 6844 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → (𝑈𝑖) = (𝑈𝑡))
122120fveq2d 6844 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((ℤRHom‘𝐾)‘𝑖) = ((ℤRHom‘𝐾)‘𝑡))
123122fveq2d 6844 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))
124123oveq2d 7385 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))
125121, 124oveq12d 7387 . . . . . . . 8 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
126 simpr 484 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ (0...𝐴))
127 ovexd 7404 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ V)
128119, 125, 126, 127fvmptd 6957 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
129128fveq2d 6844 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
13017adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ IDomn)
13136ffvelcdmda 7038 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℕ0)
132130, 66, 110, 131, 22, 75deg1pow 42102 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
133105oveq2d 7385 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · 1))
134131nn0cnd 12481 . . . . . . . . 9 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℂ)
135134mulridd 11167 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · 1) = (𝑈𝑡))
136133, 135eqtrd 2764 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
137132, 136eqtrd 2764 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
138129, 137eqtrd 2764 . . . . 5 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = (𝑈𝑡))
139138sumeq2dv 15644 . . . 4 (𝜑 → Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
140118, 139eqtrd 2764 . . 3 (𝜑 → ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
14114, 140eqtrd 2764 . 2 (𝜑 → ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
1424, 141eqtrd 2764 1 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  Vcvv 3444   class class class wbr 5102  {copab 5164  cmpt 5183   × cxp 5629  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776  0cc0 11044  1c1 11045   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  ...cfz 13444  cexp 14002  chash 14271  Σcsu 15628  cdvds 16198   gcd cgcd 16440  cprime 16617  Basecbs 17155  +gcplusg 17196  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637  .gcmg 18975  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354   RingIso crs 20355  NzRingcnzr 20397  IDomncidom 20578  DivRingcdr 20614  Fieldcfield 20615  ringczring 21332  ℤRHomczrh 21385  chrcchr 21387  ℤ/nczn 21388  algSccascl 21737  var1cv1 22036  Poly1cpl1 22037  eval1ce1 22177  deg1cdg1 25935   PrimRoots cprimroots 42052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-lmod 20744  df-lss 20814  df-cnfld 21241  df-zring 21333  df-zrh 21389  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-mdeg 25936  df-deg1 25937
This theorem is referenced by:  aks6d1c6lem3  42133
  Copyright terms: Public domain W3C validator