Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6lem1 Structured version   Visualization version   GIF version

Theorem aks6d1c6lem1 42183
Description: Lemma for claim 6, deduce exact degree of the polynomial. (Contributed by metakunt, 7-May-2025.)
Hypotheses
Ref Expression
aks6d1c6.1 = {⟨𝑒, 𝑓⟩ ∣ (𝑒 ∈ ℕ ∧ 𝑓 ∈ (Base‘(Poly1𝐾)) ∧ ∀𝑦 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅)(𝑒(.g‘(mulGrp‘𝐾))(((eval1𝐾)‘𝑓)‘𝑦)) = (((eval1𝐾)‘𝑓)‘(𝑒(.g‘(mulGrp‘𝐾))𝑦)))}
aks6d1c6.2 𝑃 = (chr‘𝐾)
aks6d1c6.3 (𝜑𝐾 ∈ Field)
aks6d1c6.4 (𝜑𝑃 ∈ ℙ)
aks6d1c6.5 (𝜑𝑅 ∈ ℕ)
aks6d1c6.6 (𝜑𝑁 ∈ ℕ)
aks6d1c6.7 (𝜑𝑃𝑁)
aks6d1c6.8 (𝜑 → (𝑁 gcd 𝑅) = 1)
aks6d1c6.9 (𝜑𝐴 < 𝑃)
aks6d1c6.10 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
aks6d1c6.11 (𝜑𝐴 ∈ ℕ0)
aks6d1c6.12 𝐸 = (𝑘 ∈ ℕ0, 𝑙 ∈ ℕ0 ↦ ((𝑃𝑘) · ((𝑁 / 𝑃)↑𝑙)))
aks6d1c6.13 𝐿 = (ℤRHom‘(ℤ/nℤ‘𝑅))
aks6d1c6.14 (𝜑 → ∀𝑎 ∈ (1...𝐴)𝑁 ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑎))))
aks6d1c6.15 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↦ (𝑃(.g‘(mulGrp‘𝐾))𝑥)) ∈ (𝐾 RingIso 𝐾))
aks6d1c6.16 (𝜑𝑀 ∈ ((mulGrp‘𝐾) PrimRoots 𝑅))
aks6d1c6.17 𝐻 = ( ∈ (ℕ0m (0...𝐴)) ↦ (((eval1𝐾)‘(𝐺))‘𝑀))
aks6d1c6.18 𝐷 = (♯‘(𝐿 “ (𝐸 “ (ℕ0 × ℕ0))))
aks6d1c6.19 𝑆 = {𝑠 ∈ (ℕ0m (0...𝐴)) ∣ Σ𝑡 ∈ (0...𝐴)(𝑠𝑡) ≤ (𝐷 − 1)}
aks6d1c6lem1.1 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
Assertion
Ref Expression
aks6d1c6lem1 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Distinct variable groups:   𝐴,𝑔,𝑖   𝑡,𝐴,𝑖   𝑔,𝐾,𝑖   𝑡,𝐾   𝑈,𝑔,𝑖   𝑡,𝑈   𝜑,𝑔,𝑖   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐴(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐷(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑃(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   (𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑅(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑆(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑈(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐸(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐺(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐻(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝐾(𝑥,𝑦,𝑒,𝑓,,𝑘,𝑠,𝑎,𝑙)   𝐿(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑀(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)   𝑁(𝑥,𝑦,𝑡,𝑒,𝑓,𝑔,,𝑖,𝑘,𝑠,𝑎,𝑙)

Proof of Theorem aks6d1c6lem1
StepHypRef Expression
1 aks6d1c6.10 . . . . 5 𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
21a1i 11 . . . 4 (𝜑𝐺 = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
32fveq1d 6878 . . 3 (𝜑 → (𝐺𝑈) = ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈))
43fveq2d 6880 . 2 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)))
5 eqidd 2736 . . . . 5 (𝜑 → (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = (𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
6 simplr 768 . . . . . . . . 9 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → 𝑔 = 𝑈)
76fveq1d 6878 . . . . . . . 8 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → (𝑔𝑖) = (𝑈𝑖))
87oveq1d 7420 . . . . . . 7 (((𝜑𝑔 = 𝑈) ∧ 𝑖 ∈ (0...𝐴)) → ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))
98mpteq2dva 5214 . . . . . 6 ((𝜑𝑔 = 𝑈) → (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
109oveq2d 7421 . . . . 5 ((𝜑𝑔 = 𝑈) → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
11 aks6d1c6lem1.1 . . . . 5 (𝜑𝑈 ∈ (ℕ0m (0...𝐴)))
12 ovexd 7440 . . . . 5 (𝜑 → ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))) ∈ V)
135, 10, 11, 12fvmptd 6993 . . . 4 (𝜑 → ((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈) = ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))
1413fveq2d 6880 . . 3 (𝜑 → ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))))
15 aks6d1c6.3 . . . . . . 7 (𝜑𝐾 ∈ Field)
16 fldidom 20731 . . . . . . 7 (𝐾 ∈ Field → 𝐾 ∈ IDomn)
1715, 16syl 17 . . . . . 6 (𝜑𝐾 ∈ IDomn)
18 fzfid 13991 . . . . . 6 (𝜑 → (0...𝐴) ∈ Fin)
19 eqid 2735 . . . . . . . . . 10 (mulGrp‘(Poly1𝐾)) = (mulGrp‘(Poly1𝐾))
20 eqid 2735 . . . . . . . . . 10 (Base‘(Poly1𝐾)) = (Base‘(Poly1𝐾))
2119, 20mgpbas 20105 . . . . . . . . 9 (Base‘(Poly1𝐾)) = (Base‘(mulGrp‘(Poly1𝐾)))
22 eqid 2735 . . . . . . . . 9 (.g‘(mulGrp‘(Poly1𝐾))) = (.g‘(mulGrp‘(Poly1𝐾)))
2315fldcrngd 20702 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
24 crngring 20205 . . . . . . . . . . . . 13 (𝐾 ∈ CRing → 𝐾 ∈ Ring)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
26 eqid 2735 . . . . . . . . . . . . 13 (Poly1𝐾) = (Poly1𝐾)
2726ply1ring 22183 . . . . . . . . . . . 12 (𝐾 ∈ Ring → (Poly1𝐾) ∈ Ring)
2825, 27syl 17 . . . . . . . . . . 11 (𝜑 → (Poly1𝐾) ∈ Ring)
2919ringmgp 20199 . . . . . . . . . . 11 ((Poly1𝐾) ∈ Ring → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3028, 29syl 17 . . . . . . . . . 10 (𝜑 → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
3130adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (mulGrp‘(Poly1𝐾)) ∈ Mnd)
32 nn0ex 12507 . . . . . . . . . . . . . 14 0 ∈ V
3332a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ0 ∈ V)
34 ovexd 7440 . . . . . . . . . . . . 13 (𝜑 → (0...𝐴) ∈ V)
3533, 34elmapd 8854 . . . . . . . . . . . 12 (𝜑 → (𝑈 ∈ (ℕ0m (0...𝐴)) ↔ 𝑈:(0...𝐴)⟶ℕ0))
3611, 35mpbid 232 . . . . . . . . . . 11 (𝜑𝑈:(0...𝐴)⟶ℕ0)
3736adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑈:(0...𝐴)⟶ℕ0)
38 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → 𝑖 ∈ (0...𝐴))
3937, 38ffvelcdmd 7075 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (𝑈𝑖) ∈ ℕ0)
40 2fveq3 6881 . . . . . . . . . . . 12 (𝑡 = 𝑖 → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))
4140oveq2d 7421 . . . . . . . . . . 11 (𝑡 = 𝑖 → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))
4241eleq1d 2819 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾))))
43 ringmnd 20203 . . . . . . . . . . . . . . 15 ((Poly1𝐾) ∈ Ring → (Poly1𝐾) ∈ Mnd)
4428, 43syl 17 . . . . . . . . . . . . . 14 (𝜑 → (Poly1𝐾) ∈ Mnd)
4544adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (Poly1𝐾) ∈ Mnd)
4625adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ Ring)
47 eqid 2735 . . . . . . . . . . . . . . 15 (var1𝐾) = (var1𝐾)
4847, 26, 20vr1cl 22153 . . . . . . . . . . . . . 14 (𝐾 ∈ Ring → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
4946, 48syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) ∈ (Base‘(Poly1𝐾)))
50 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (ℤRHom‘𝐾) = (ℤRHom‘𝐾)
5150zrhrhm 21472 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ Ring → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
5225, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾))
53 zringbas 21414 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
54 eqid 2735 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
5553, 54rhmf 20445 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝐾) ∈ (ℤring RingHom 𝐾) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5652, 55syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
5756adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → (ℤRHom‘𝐾):ℤ⟶(Base‘𝐾))
58 elfzelz 13541 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (0...𝐴) → 𝑡 ∈ ℤ)
5958adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ ℤ)
6057, 59ffvelcdmd 7075 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾))
61 eqid 2735 . . . . . . . . . . . . . . 15 (algSc‘(Poly1𝐾)) = (algSc‘(Poly1𝐾))
6226, 61, 54, 20ply1sclcl 22223 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
6346, 60, 62syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)))
64 eqid 2735 . . . . . . . . . . . . . 14 (+g‘(Poly1𝐾)) = (+g‘(Poly1𝐾))
6520, 64mndcl 18720 . . . . . . . . . . . . 13 (((Poly1𝐾) ∈ Mnd ∧ (var1𝐾) ∈ (Base‘(Poly1𝐾)) ∧ ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾))) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6645, 49, 63, 65syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6766ralrimiva 3132 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6867adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾)))
6942, 68, 38rspcdva 3602 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ∈ (Base‘(Poly1𝐾)))
7021, 22, 31, 39, 69mulgnn0cld 19078 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)))
7126ply1idom 26082 . . . . . . . . . . 11 (𝐾 ∈ IDomn → (Poly1𝐾) ∈ IDomn)
7217, 71syl 17 . . . . . . . . . 10 (𝜑 → (Poly1𝐾) ∈ IDomn)
7372adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → (Poly1𝐾) ∈ IDomn)
7441neeq1d 2991 . . . . . . . . . 10 (𝑡 = 𝑖 → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾))))
75 eqid 2735 . . . . . . . . . . . . . . . 16 (deg1𝐾) = (deg1𝐾)
7675, 26, 20deg1xrcl 26039 . . . . . . . . . . . . . . . . . . 19 (((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)) ∈ (Base‘(Poly1𝐾)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
7763, 76syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ ℝ*)
78 0xr 11282 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
7978a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 ∈ ℝ*)
80 1xr 11294 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ*
8180a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℝ*)
8275, 26, 54, 61deg1sclle 26069 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Ring ∧ ((ℤRHom‘𝐾)‘𝑡) ∈ (Base‘𝐾)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
8346, 60, 82syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≤ 0)
84 0lt1 11759 . . . . . . . . . . . . . . . . . . 19 0 < 1
8584a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → 0 < 1)
8677, 79, 81, 83, 85xrlelttrd 13176 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < 1)
8721, 22mulg1 19064 . . . . . . . . . . . . . . . . . . . . 21 ((var1𝐾) ∈ (Base‘(Poly1𝐾)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8849, 87syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑡 ∈ (0...𝐴)) → (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)) = (var1𝐾))
8988eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → (var1𝐾) = (1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾)))
9089fveq2d 6880 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(var1𝐾)) = ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))))
91 isfld 20700 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ Field ↔ (𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing))
92 drngnzr 20708 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
9392adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ DivRing ∧ 𝐾 ∈ CRing) → 𝐾 ∈ NzRing)
9491, 93sylbi 217 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ Field → 𝐾 ∈ NzRing)
9515, 94syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ NzRing)
9695adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ NzRing)
97 1nn0 12517 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
9897a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑡 ∈ (0...𝐴)) → 1 ∈ ℕ0)
9975, 26, 47, 19, 22deg1pw 26078 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ NzRing ∧ 1 ∈ ℕ0) → ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10096, 98, 99syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(1(.g‘(mulGrp‘(Poly1𝐾)))(var1𝐾))) = 1)
10190, 100eqtr2d 2771 . . . . . . . . . . . . . . . . 17 ((𝜑𝑡 ∈ (0...𝐴)) → 1 = ((deg1𝐾)‘(var1𝐾)))
10286, 101breqtrd 5145 . . . . . . . . . . . . . . . 16 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) < ((deg1𝐾)‘(var1𝐾)))
10326, 75, 46, 20, 64, 49, 63, 102deg1add 26060 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = ((deg1𝐾)‘(var1𝐾)))
10490, 100eqtrd 2770 . . . . . . . . . . . . . . 15 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘(var1𝐾)) = 1)
105103, 104eqtrd 2770 . . . . . . . . . . . . . 14 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) = 1)
106105, 98eqeltrd 2834 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0)
107 eqid 2735 . . . . . . . . . . . . . . 15 (0g‘(Poly1𝐾)) = (0g‘(Poly1𝐾))
10875, 26, 107, 20deg1nn0clb 26047 . . . . . . . . . . . . . 14 ((𝐾 ∈ Ring ∧ ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ∈ (Base‘(Poly1𝐾))) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
10946, 66, 108syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑡 ∈ (0...𝐴)) → (((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)) ↔ ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ ℕ0))
110106, 109mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑡 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
111110ralrimiva 3132 . . . . . . . . . . 11 (𝜑 → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
112111adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...𝐴)) → ∀𝑡 ∈ (0...𝐴)((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))) ≠ (0g‘(Poly1𝐾)))
11374, 112, 38rspcdva 3602 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...𝐴)) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) ≠ (0g‘(Poly1𝐾)))
11473, 69, 113, 39, 22idomnnzpownz 42145 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝐴)) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾)))
11570, 114jca 511 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝐴)) → (((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
116115ralrimiva 3132 . . . . . 6 (𝜑 → ∀𝑖 ∈ (0...𝐴)(((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ∈ (Base‘(Poly1𝐾)) ∧ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) ≠ (0g‘(Poly1𝐾))))
11717, 18, 116deg1gprod 42153 . . . . 5 (𝜑 → (((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) ∧ 0 ≤ ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))))
118117simpld 494 . . . 4 (𝜑 → ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)))
119 eqidd 2736 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))) = (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))
120 simpr 484 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → 𝑖 = 𝑡)
121120fveq2d 6880 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → (𝑈𝑖) = (𝑈𝑡))
122120fveq2d 6880 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((ℤRHom‘𝐾)‘𝑖) = ((ℤRHom‘𝐾)‘𝑡))
123122fveq2d 6880 . . . . . . . . . 10 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)) = ((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))
124123oveq2d 7421 . . . . . . . . 9 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))) = ((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))
125121, 124oveq12d 7423 . . . . . . . 8 (((𝜑𝑡 ∈ (0...𝐴)) ∧ 𝑖 = 𝑡) → ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
126 simpr 484 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝑡 ∈ (0...𝐴))
127 ovexd 7440 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))) ∈ V)
128119, 125, 126, 127fvmptd 6993 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡) = ((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡)))))
129128fveq2d 6880 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
13017adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → 𝐾 ∈ IDomn)
13136ffvelcdmda 7074 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℕ0)
132130, 66, 110, 131, 22, 75deg1pow 42154 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))))
133105oveq2d 7421 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = ((𝑈𝑡) · 1))
134131nn0cnd 12564 . . . . . . . . 9 ((𝜑𝑡 ∈ (0...𝐴)) → (𝑈𝑡) ∈ ℂ)
135134mulridd 11252 . . . . . . . 8 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · 1) = (𝑈𝑡))
136133, 135eqtrd 2770 . . . . . . 7 ((𝜑𝑡 ∈ (0...𝐴)) → ((𝑈𝑡) · ((deg1𝐾)‘((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
137132, 136eqtrd 2770 . . . . . 6 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑈𝑡)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑡))))) = (𝑈𝑡))
138129, 137eqtrd 2770 . . . . 5 ((𝜑𝑡 ∈ (0...𝐴)) → ((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = (𝑈𝑡))
139138sumeq2dv 15718 . . . 4 (𝜑 → Σ𝑡 ∈ (0...𝐴)((deg1𝐾)‘((𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))‘𝑡)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
140118, 139eqtrd 2770 . . 3 (𝜑 → ((deg1𝐾)‘((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑈𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖))))))) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
14114, 140eqtrd 2770 . 2 (𝜑 → ((deg1𝐾)‘((𝑔 ∈ (ℕ0m (0...𝐴)) ↦ ((mulGrp‘(Poly1𝐾)) Σg (𝑖 ∈ (0...𝐴) ↦ ((𝑔𝑖)(.g‘(mulGrp‘(Poly1𝐾)))((var1𝐾)(+g‘(Poly1𝐾))((algSc‘(Poly1𝐾))‘((ℤRHom‘𝐾)‘𝑖)))))))‘𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
1424, 141eqtrd 2770 1 (𝜑 → ((deg1𝐾)‘(𝐺𝑈)) = Σ𝑡 ∈ (0...𝐴)(𝑈𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  Vcvv 3459   class class class wbr 5119  {copab 5181  cmpt 5201   × cxp 5652  cima 5657  wf 6527  cfv 6531  (class class class)co 7405  cmpo 7407  m cmap 8840  0cc0 11129  1c1 11130   · cmul 11134  *cxr 11268   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  0cn0 12501  cz 12588  ...cfz 13524  cexp 14079  chash 14348  Σcsu 15702  cdvds 16272   gcd cgcd 16513  cprime 16690  Basecbs 17228  +gcplusg 17271  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  .gcmg 19050  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429   RingIso crs 20430  NzRingcnzr 20472  IDomncidom 20653  DivRingcdr 20689  Fieldcfield 20690  ringczring 21407  ℤRHomczrh 21460  chrcchr 21462  ℤ/nczn 21463  algSccascl 21812  var1cv1 22111  Poly1cpl1 22112  eval1ce1 22252  deg1cdg1 26011   PrimRoots cprimroots 42104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-rhm 20432  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-drng 20691  df-field 20692  df-lmod 20819  df-lss 20889  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-mdeg 26012  df-deg1 26013
This theorem is referenced by:  aks6d1c6lem3  42185
  Copyright terms: Public domain W3C validator