![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolsscl | Structured version Visualization version GIF version |
Description: If a set is contained in another of bounded measure, it too is bounded. (Contributed by Mario Carneiro, 18-Mar-2014.) |
Ref | Expression |
---|---|
ovolsscl | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3988 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ) | |
2 | 1 | 3adant3 1129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → 𝐴 ⊆ ℝ) |
3 | simp3 1135 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) ∈ ℝ) | |
4 | ovolss 25432 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) | |
5 | 4 | 3adant3 1129 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) |
6 | ovollecl 25430 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ ∧ (vol*‘𝐴) ≤ (vol*‘𝐵)) → (vol*‘𝐴) ∈ ℝ) | |
7 | 2, 3, 5, 6 | syl3anc 1368 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2098 ⊆ wss 3947 class class class wbr 5150 ‘cfv 6551 ℝcr 11143 ≤ cle 11285 vol*covol 25409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9471 df-inf 9472 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-z 12595 df-uz 12859 df-rp 13013 df-ico 13368 df-fz 13523 df-seq 14005 df-exp 14065 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-ovol 25411 |
This theorem is referenced by: ismbl2 25474 cmmbl 25481 nulmbl 25482 nulmbl2 25483 unmbl 25484 volinun 25493 voliunlem1 25497 voliunlem2 25498 volsup 25503 ioombl1lem4 25508 ioombl1 25509 ovolioo 25515 uniioombllem2 25530 uniioombllem3 25532 uniioombllem4 25533 uniioombllem5 25534 uniioombllem6 25535 uniioombl 25536 volcn 25553 vitalilem4 25558 i1fima2 25626 i1fadd 25642 i1fmul 25643 itg1addlem2 25644 i1fres 25653 itg1climres 25662 mbfi1fseqlem4 25666 ftc1lem4 25992 mblfinlem3 37137 mblfinlem4 37138 ismblfin 37139 itg2addnclem2 37150 ftc1cnnclem 37169 ismbl3 45376 |
Copyright terms: Public domain | W3C validator |