![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovolsscl | Structured version Visualization version GIF version |
Description: If a set is contained in another of bounded measure, it too is bounded. (Contributed by Mario Carneiro, 18-Mar-2014.) |
Ref | Expression |
---|---|
ovolsscl | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr 3990 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → 𝐴 ⊆ ℝ) | |
2 | 1 | 3adant3 1131 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → 𝐴 ⊆ ℝ) |
3 | simp3 1137 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) ∈ ℝ) | |
4 | ovolss 25235 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) | |
5 | 4 | 3adant3 1131 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐴) ≤ (vol*‘𝐵)) |
6 | ovollecl 25233 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ ∧ (vol*‘𝐴) ≤ (vol*‘𝐵)) → (vol*‘𝐴) ∈ ℝ) | |
7 | 2, 3, 5, 6 | syl3anc 1370 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3948 class class class wbr 5148 ‘cfv 6543 ℝcr 11113 ≤ cle 11254 vol*covol 25212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-inf 9442 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-ico 13335 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-ovol 25214 |
This theorem is referenced by: ismbl2 25277 cmmbl 25284 nulmbl 25285 nulmbl2 25286 unmbl 25287 volinun 25296 voliunlem1 25300 voliunlem2 25301 volsup 25306 ioombl1lem4 25311 ioombl1 25312 ovolioo 25318 uniioombllem2 25333 uniioombllem3 25335 uniioombllem4 25336 uniioombllem5 25337 uniioombllem6 25338 uniioombl 25339 volcn 25356 vitalilem4 25361 i1fima2 25429 i1fadd 25445 i1fmul 25446 itg1addlem2 25447 i1fres 25456 itg1climres 25465 mbfi1fseqlem4 25469 ftc1lem4 25792 mblfinlem3 36831 mblfinlem4 36832 ismblfin 36833 itg2addnclem2 36844 ftc1cnnclem 36863 ismbl3 45001 |
Copyright terms: Public domain | W3C validator |