Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > binom1p | Structured version Visualization version GIF version |
Description: Special case of the binomial theorem for (1 + 𝐴)↑𝑁. (Contributed by Paul Chapman, 10-May-2007.) |
Ref | Expression |
---|---|
binom1p | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11009 | . . 3 ⊢ 1 ∈ ℂ | |
2 | binom 15621 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (𝐴↑𝑘)))) | |
3 | 1, 2 | mp3an1 1447 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (𝐴↑𝑘)))) |
4 | fznn0sub 13368 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑁) → (𝑁 − 𝑘) ∈ ℕ0) | |
5 | 4 | adantl 482 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈ ℕ0) |
6 | 5 | nn0zd 12504 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁 − 𝑘) ∈ ℤ) |
7 | 1exp 13892 | . . . . . . 7 ⊢ ((𝑁 − 𝑘) ∈ ℤ → (1↑(𝑁 − 𝑘)) = 1) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (1↑(𝑁 − 𝑘)) = 1) |
9 | 8 | oveq1d 7332 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁 − 𝑘)) · (𝐴↑𝑘)) = (1 · (𝐴↑𝑘))) |
10 | simpl 483 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
11 | elfznn0 13429 | . . . . . . 7 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
12 | expcl 13880 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑𝑘) ∈ ℂ) | |
13 | 10, 11, 12 | syl2an 596 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴↑𝑘) ∈ ℂ) |
14 | 13 | mulid2d 11073 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (1 · (𝐴↑𝑘)) = (𝐴↑𝑘)) |
15 | 9, 14 | eqtrd 2777 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((1↑(𝑁 − 𝑘)) · (𝐴↑𝑘)) = (𝐴↑𝑘)) |
16 | 15 | oveq2d 7333 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (𝐴↑𝑘))) = ((𝑁C𝑘) · (𝐴↑𝑘))) |
17 | 16 | sumeq2dv 15494 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((1↑(𝑁 − 𝑘)) · (𝐴↑𝑘))) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) |
18 | 3, 17 | eqtrd 2777 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝐴)↑𝑁) = Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · (𝐴↑𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 (class class class)co 7317 ℂcc 10949 0cc0 10951 1c1 10952 + caddc 10954 · cmul 10956 − cmin 11285 ℕ0cn0 12313 ℤcz 12399 ...cfz 13319 ↑cexp 13862 Ccbc 14096 Σcsu 15476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-inf2 9477 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-sup 9278 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-n0 12314 df-z 12400 df-uz 12663 df-rp 12811 df-fz 13320 df-fzo 13463 df-seq 13802 df-exp 13863 df-fac 14068 df-bc 14097 df-hash 14125 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-clim 15276 df-sum 15477 |
This theorem is referenced by: binom11 15623 binom1dif 15624 bpolydiflem 15843 musum 26423 |
Copyright terms: Public domain | W3C validator |