![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitsfi | Structured version Visualization version GIF version |
Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsfi | β’ (π β β0 β (bitsβπ) β Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12512 | . . 3 β’ (π β β0 β π β β) | |
2 | 2re 12317 | . . . 4 β’ 2 β β | |
3 | 2 | a1i 11 | . . 3 β’ (π β β0 β 2 β β) |
4 | 1lt2 12414 | . . . 4 β’ 1 < 2 | |
5 | 4 | a1i 11 | . . 3 β’ (π β β0 β 1 < 2) |
6 | expnbnd 14227 | . . 3 β’ ((π β β β§ 2 β β β§ 1 < 2) β βπ β β π < (2βπ)) | |
7 | 1, 3, 5, 6 | syl3anc 1369 | . 2 β’ (π β β0 β βπ β β π < (2βπ)) |
8 | fzofi 13972 | . . 3 β’ (0..^π) β Fin | |
9 | simpl 482 | . . . . . 6 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β β0) | |
10 | nn0uz 12895 | . . . . . 6 β’ β0 = (β€β₯β0) | |
11 | 9, 10 | eleqtrdi 2839 | . . . . 5 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β (β€β₯β0)) |
12 | 2nn 12316 | . . . . . . . 8 β’ 2 β β | |
13 | 12 | a1i 11 | . . . . . . 7 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β 2 β β) |
14 | simprl 770 | . . . . . . . 8 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β β) | |
15 | 14 | nnnn0d 12563 | . . . . . . 7 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β β0) |
16 | 13, 15 | nnexpcld 14240 | . . . . . 6 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (2βπ) β β) |
17 | 16 | nnzd 12616 | . . . . 5 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (2βπ) β β€) |
18 | simprr 772 | . . . . 5 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π < (2βπ)) | |
19 | elfzo2 13668 | . . . . 5 β’ (π β (0..^(2βπ)) β (π β (β€β₯β0) β§ (2βπ) β β€ β§ π < (2βπ))) | |
20 | 11, 17, 18, 19 | syl3anbrc 1341 | . . . 4 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β (0..^(2βπ))) |
21 | 9 | nn0zd 12615 | . . . . 5 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β β€) |
22 | bitsfzo 16410 | . . . . 5 β’ ((π β β€ β§ π β β0) β (π β (0..^(2βπ)) β (bitsβπ) β (0..^π))) | |
23 | 21, 15, 22 | syl2anc 583 | . . . 4 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (π β (0..^(2βπ)) β (bitsβπ) β (0..^π))) |
24 | 20, 23 | mpbid 231 | . . 3 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (bitsβπ) β (0..^π)) |
25 | ssfi 9198 | . . 3 β’ (((0..^π) β Fin β§ (bitsβπ) β (0..^π)) β (bitsβπ) β Fin) | |
26 | 8, 24, 25 | sylancr 586 | . 2 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (bitsβπ) β Fin) |
27 | 7, 26 | rexlimddv 3158 | 1 β’ (π β β0 β (bitsβπ) β Fin) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β wcel 2099 βwrex 3067 β wss 3947 class class class wbr 5148 βcfv 6548 (class class class)co 7420 Fincfn 8964 βcr 11138 0cc0 11139 1c1 11140 < clt 11279 βcn 12243 2c2 12298 β0cn0 12503 β€cz 12589 β€β₯cuz 12853 ..^cfzo 13660 βcexp 14059 bitscbits 16394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-dvds 16232 df-bits 16397 |
This theorem is referenced by: bitsinv2 16418 bitsf1ocnv 16419 bitsf1 16421 eulerpartlemgc 33982 eulerpartlemgs2 34000 |
Copyright terms: Public domain | W3C validator |