![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bitsfi | Structured version Visualization version GIF version |
Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsfi | β’ (π β β0 β (bitsβπ) β Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12482 | . . 3 β’ (π β β0 β π β β) | |
2 | 2re 12287 | . . . 4 β’ 2 β β | |
3 | 2 | a1i 11 | . . 3 β’ (π β β0 β 2 β β) |
4 | 1lt2 12384 | . . . 4 β’ 1 < 2 | |
5 | 4 | a1i 11 | . . 3 β’ (π β β0 β 1 < 2) |
6 | expnbnd 14198 | . . 3 β’ ((π β β β§ 2 β β β§ 1 < 2) β βπ β β π < (2βπ)) | |
7 | 1, 3, 5, 6 | syl3anc 1368 | . 2 β’ (π β β0 β βπ β β π < (2βπ)) |
8 | fzofi 13942 | . . 3 β’ (0..^π) β Fin | |
9 | simpl 482 | . . . . . 6 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β β0) | |
10 | nn0uz 12865 | . . . . . 6 β’ β0 = (β€β₯β0) | |
11 | 9, 10 | eleqtrdi 2837 | . . . . 5 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β (β€β₯β0)) |
12 | 2nn 12286 | . . . . . . . 8 β’ 2 β β | |
13 | 12 | a1i 11 | . . . . . . 7 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β 2 β β) |
14 | simprl 768 | . . . . . . . 8 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β β) | |
15 | 14 | nnnn0d 12533 | . . . . . . 7 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β β0) |
16 | 13, 15 | nnexpcld 14211 | . . . . . 6 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (2βπ) β β) |
17 | 16 | nnzd 12586 | . . . . 5 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (2βπ) β β€) |
18 | simprr 770 | . . . . 5 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π < (2βπ)) | |
19 | elfzo2 13638 | . . . . 5 β’ (π β (0..^(2βπ)) β (π β (β€β₯β0) β§ (2βπ) β β€ β§ π < (2βπ))) | |
20 | 11, 17, 18, 19 | syl3anbrc 1340 | . . . 4 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β (0..^(2βπ))) |
21 | 9 | nn0zd 12585 | . . . . 5 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β π β β€) |
22 | bitsfzo 16381 | . . . . 5 β’ ((π β β€ β§ π β β0) β (π β (0..^(2βπ)) β (bitsβπ) β (0..^π))) | |
23 | 21, 15, 22 | syl2anc 583 | . . . 4 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (π β (0..^(2βπ)) β (bitsβπ) β (0..^π))) |
24 | 20, 23 | mpbid 231 | . . 3 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (bitsβπ) β (0..^π)) |
25 | ssfi 9172 | . . 3 β’ (((0..^π) β Fin β§ (bitsβπ) β (0..^π)) β (bitsβπ) β Fin) | |
26 | 8, 24, 25 | sylancr 586 | . 2 β’ ((π β β0 β§ (π β β β§ π < (2βπ))) β (bitsβπ) β Fin) |
27 | 7, 26 | rexlimddv 3155 | 1 β’ (π β β0 β (bitsβπ) β Fin) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β wcel 2098 βwrex 3064 β wss 3943 class class class wbr 5141 βcfv 6536 (class class class)co 7404 Fincfn 8938 βcr 11108 0cc0 11109 1c1 11110 < clt 11249 βcn 12213 2c2 12268 β0cn0 12473 β€cz 12559 β€β₯cuz 12823 ..^cfzo 13630 βcexp 14030 bitscbits 16365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14031 df-dvds 16203 df-bits 16368 |
This theorem is referenced by: bitsinv2 16389 bitsf1ocnv 16390 bitsf1 16392 eulerpartlemgc 33891 eulerpartlemgs2 33909 |
Copyright terms: Public domain | W3C validator |