MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfi Structured version   Visualization version   GIF version

Theorem bitsfi 15533
Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfi (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin)

Proof of Theorem bitsfi
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0re 11629 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 2re 11426 . . . 4 2 ∈ ℝ
32a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
4 1lt2 11530 . . . 4 1 < 2
54a1i 11 . . 3 (𝑁 ∈ ℕ0 → 1 < 2)
6 expnbnd 13288 . . 3 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚))
71, 3, 5, 6syl3anc 1496 . 2 (𝑁 ∈ ℕ0 → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚))
8 fzofi 13069 . . 3 (0..^𝑚) ∈ Fin
9 simpl 476 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℕ0)
10 nn0uz 12005 . . . . . 6 0 = (ℤ‘0)
119, 10syl6eleq 2917 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (ℤ‘0))
12 2nn 11425 . . . . . . . 8 2 ∈ ℕ
1312a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 2 ∈ ℕ)
14 simprl 789 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ)
1514nnnn0d 11679 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ0)
1613, 15nnexpcld 13327 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℕ)
1716nnzd 11810 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℤ)
18 simprr 791 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 < (2↑𝑚))
19 elfzo2 12769 . . . . 5 (𝑁 ∈ (0..^(2↑𝑚)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑚) ∈ ℤ ∧ 𝑁 < (2↑𝑚)))
2011, 17, 18, 19syl3anbrc 1449 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (0..^(2↑𝑚)))
219nn0zd 11809 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℤ)
22 bitsfzo 15531 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚)))
2321, 15, 22syl2anc 581 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚)))
2420, 23mpbid 224 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ⊆ (0..^𝑚))
25 ssfi 8450 . . 3 (((0..^𝑚) ∈ Fin ∧ (bits‘𝑁) ⊆ (0..^𝑚)) → (bits‘𝑁) ∈ Fin)
268, 24, 25sylancr 583 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ∈ Fin)
277, 26rexlimddv 3246 1 (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2166  wrex 3119  wss 3799   class class class wbr 4874  cfv 6124  (class class class)co 6906  Fincfn 8223  cr 10252  0cc0 10253  1c1 10254   < clt 10392  cn 11351  2c2 11407  0cn0 11619  cz 11705  cuz 11969  ..^cfzo 12761  cexp 13155  bitscbits 15515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-inf 8619  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-n0 11620  df-z 11706  df-uz 11970  df-rp 12114  df-fz 12621  df-fzo 12762  df-fl 12889  df-seq 13097  df-exp 13156  df-dvds 15359  df-bits 15518
This theorem is referenced by:  bitsinv2  15539  bitsf1ocnv  15540  bitsf1  15542  eulerpartlemgc  30970  eulerpartlemgs2  30988
  Copyright terms: Public domain W3C validator