Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitsfi | Structured version Visualization version GIF version |
Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
Ref | Expression |
---|---|
bitsfi | ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0re 12172 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
2 | 2re 11977 | . . . 4 ⊢ 2 ∈ ℝ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
4 | 1lt2 12074 | . . . 4 ⊢ 1 < 2 | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 1 < 2) |
6 | expnbnd 13875 | . . 3 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) | |
7 | 1, 3, 5, 6 | syl3anc 1369 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚)) |
8 | fzofi 13622 | . . 3 ⊢ (0..^𝑚) ∈ Fin | |
9 | simpl 482 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℕ0) | |
10 | nn0uz 12549 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
11 | 9, 10 | eleqtrdi 2849 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (ℤ≥‘0)) |
12 | 2nn 11976 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
13 | 12 | a1i 11 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 2 ∈ ℕ) |
14 | simprl 767 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ) | |
15 | 14 | nnnn0d 12223 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ0) |
16 | 13, 15 | nnexpcld 13888 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℕ) |
17 | 16 | nnzd 12354 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℤ) |
18 | simprr 769 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 < (2↑𝑚)) | |
19 | elfzo2 13319 | . . . . 5 ⊢ (𝑁 ∈ (0..^(2↑𝑚)) ↔ (𝑁 ∈ (ℤ≥‘0) ∧ (2↑𝑚) ∈ ℤ ∧ 𝑁 < (2↑𝑚))) | |
20 | 11, 17, 18, 19 | syl3anbrc 1341 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (0..^(2↑𝑚))) |
21 | 9 | nn0zd 12353 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℤ) |
22 | bitsfzo 16070 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) | |
23 | 21, 15, 22 | syl2anc 583 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚))) |
24 | 20, 23 | mpbid 231 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ⊆ (0..^𝑚)) |
25 | ssfi 8918 | . . 3 ⊢ (((0..^𝑚) ∈ Fin ∧ (bits‘𝑁) ⊆ (0..^𝑚)) → (bits‘𝑁) ∈ Fin) | |
26 | 8, 24, 25 | sylancr 586 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ∈ Fin) |
27 | 7, 26 | rexlimddv 3219 | 1 ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℝcr 10801 0cc0 10802 1c1 10803 < clt 10940 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 ℤ≥cuz 12511 ..^cfzo 13311 ↑cexp 13710 bitscbits 16054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-dvds 15892 df-bits 16057 |
This theorem is referenced by: bitsinv2 16078 bitsf1ocnv 16079 bitsf1 16081 eulerpartlemgc 32229 eulerpartlemgs2 32247 |
Copyright terms: Public domain | W3C validator |