MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfi Structured version   Visualization version   GIF version

Theorem bitsfi 16144
Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfi (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin)

Proof of Theorem bitsfi
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0re 12242 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 2re 12047 . . . 4 2 ∈ ℝ
32a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
4 1lt2 12144 . . . 4 1 < 2
54a1i 11 . . 3 (𝑁 ∈ ℕ0 → 1 < 2)
6 expnbnd 13947 . . 3 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚))
71, 3, 5, 6syl3anc 1370 . 2 (𝑁 ∈ ℕ0 → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚))
8 fzofi 13694 . . 3 (0..^𝑚) ∈ Fin
9 simpl 483 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℕ0)
10 nn0uz 12620 . . . . . 6 0 = (ℤ‘0)
119, 10eleqtrdi 2849 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (ℤ‘0))
12 2nn 12046 . . . . . . . 8 2 ∈ ℕ
1312a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 2 ∈ ℕ)
14 simprl 768 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ)
1514nnnn0d 12293 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ0)
1613, 15nnexpcld 13960 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℕ)
1716nnzd 12425 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℤ)
18 simprr 770 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 < (2↑𝑚))
19 elfzo2 13390 . . . . 5 (𝑁 ∈ (0..^(2↑𝑚)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑚) ∈ ℤ ∧ 𝑁 < (2↑𝑚)))
2011, 17, 18, 19syl3anbrc 1342 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (0..^(2↑𝑚)))
219nn0zd 12424 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℤ)
22 bitsfzo 16142 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚)))
2321, 15, 22syl2anc 584 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚)))
2420, 23mpbid 231 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ⊆ (0..^𝑚))
25 ssfi 8956 . . 3 (((0..^𝑚) ∈ Fin ∧ (bits‘𝑁) ⊆ (0..^𝑚)) → (bits‘𝑁) ∈ Fin)
268, 24, 25sylancr 587 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ∈ Fin)
277, 26rexlimddv 3220 1 (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wrex 3065  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  Fincfn 8733  cr 10870  0cc0 10871  1c1 10872   < clt 11009  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  ..^cfzo 13382  cexp 13782  bitscbits 16126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-dvds 15964  df-bits 16129
This theorem is referenced by:  bitsinv2  16150  bitsf1ocnv  16151  bitsf1  16153  eulerpartlemgc  32329  eulerpartlemgs2  32347
  Copyright terms: Public domain W3C validator