MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsfi Structured version   Visualization version   GIF version

Theorem bitsfi 15778
Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bitsfi (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin)

Proof of Theorem bitsfi
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0re 11898 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2 2re 11703 . . . 4 2 ∈ ℝ
32a1i 11 . . 3 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
4 1lt2 11800 . . . 4 1 < 2
54a1i 11 . . 3 (𝑁 ∈ ℕ0 → 1 < 2)
6 expnbnd 13586 . . 3 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚))
71, 3, 5, 6syl3anc 1365 . 2 (𝑁 ∈ ℕ0 → ∃𝑚 ∈ ℕ 𝑁 < (2↑𝑚))
8 fzofi 13335 . . 3 (0..^𝑚) ∈ Fin
9 simpl 483 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℕ0)
10 nn0uz 12272 . . . . . 6 0 = (ℤ‘0)
119, 10syl6eleq 2927 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (ℤ‘0))
12 2nn 11702 . . . . . . . 8 2 ∈ ℕ
1312a1i 11 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 2 ∈ ℕ)
14 simprl 767 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ)
1514nnnn0d 11947 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑚 ∈ ℕ0)
1613, 15nnexpcld 13599 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℕ)
1716nnzd 12078 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (2↑𝑚) ∈ ℤ)
18 simprr 769 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 < (2↑𝑚))
19 elfzo2 13034 . . . . 5 (𝑁 ∈ (0..^(2↑𝑚)) ↔ (𝑁 ∈ (ℤ‘0) ∧ (2↑𝑚) ∈ ℤ ∧ 𝑁 < (2↑𝑚)))
2011, 17, 18, 19syl3anbrc 1337 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ (0..^(2↑𝑚)))
219nn0zd 12077 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → 𝑁 ∈ ℤ)
22 bitsfzo 15776 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚)))
2321, 15, 22syl2anc 584 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (𝑁 ∈ (0..^(2↑𝑚)) ↔ (bits‘𝑁) ⊆ (0..^𝑚)))
2420, 23mpbid 233 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ⊆ (0..^𝑚))
25 ssfi 8730 . . 3 (((0..^𝑚) ∈ Fin ∧ (bits‘𝑁) ⊆ (0..^𝑚)) → (bits‘𝑁) ∈ Fin)
268, 24, 25sylancr 587 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑚 ∈ ℕ ∧ 𝑁 < (2↑𝑚))) → (bits‘𝑁) ∈ Fin)
277, 26rexlimddv 3295 1 (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2107  wrex 3143  wss 3939   class class class wbr 5062  cfv 6351  (class class class)co 7151  Fincfn 8501  cr 10528  0cc0 10529  1c1 10530   < clt 10667  cn 11630  2c2 11684  0cn0 11889  cz 11973  cuz 12235  ..^cfzo 13026  cexp 13422  bitscbits 15760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-dvds 15600  df-bits 15763
This theorem is referenced by:  bitsinv2  15784  bitsf1ocnv  15785  bitsf1  15787  eulerpartlemgc  31508  eulerpartlemgs2  31526
  Copyright terms: Public domain W3C validator