MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp1d Structured version   Visualization version   GIF version

Theorem exp1d 14110
Description: Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
expcld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
exp1d (𝜑 → (𝐴↑1) = 𝐴)

Proof of Theorem exp1d
StepHypRef Expression
1 expcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 exp1 14037 . 2 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
31, 2syl 17 1 (𝜑 → (𝐴↑1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  (class class class)co 7411  cc 11110  1c1 11113  cexp 14031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-seq 13971  df-exp 14032
This theorem is referenced by:  faclbnd4lem1  14257  fsumcube  16008  sin01gt0  16137  rplpwr  16503  prmdvdsexp  16656  phiprm  16714  eulerthlem2  16719  pcelnn  16807  expnprm  16839  prmpwdvds  16841  pockthg  16843  odcau  19513  plyco  25979  dgrcolem1  26011  vieta1  26049  taylthlem1  26109  ftalem2  26802  vmaprm  26845  vma1  26894  1sgmprm  26926  chtublem  26938  fsumvma2  26941  chpchtsum  26946  logfacrlim2  26953  bposlem2  27012  bposlem6  27016  lgsval2lem  27034  2sqblem  27158  chebbnd1lem1  27196  rplogsumlem2  27212  rpvmasumlem  27214  ostth3  27365  nn0prpwlem  35510  nn0prpw  35511  bfplem1  36993  dvrelogpow2b  41239  aks4d1p1p4  41242  aks4d1p1p7  41245  aks4d1p1p5  41246  aks4d1p1  41247  aks4d1p3  41249  aks4d1p8d2  41256  2ap1caineq  41267  fltnltalem  41706  fltnlta  41707  3cubeslem3r  41727  rmxy1  41963  jm2.18  42029  jm2.23  42037  jm3.1lem2  42059  areaquad  42267  radcnvrat  43375  stoweidlem3  45018  wallispilem2  45081  stirlinglem1  45089  stirlinglem7  45095  stirlinglem10  45098  lighneal  46578  blenpw2m1  47353
  Copyright terms: Public domain W3C validator