| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp1d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp1d | ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp1 13976 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 1c1 11014 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: faclbnd4lem1 14202 fsumcube 15969 sin01gt0 16101 rplpwr 16471 prmdvdsexp 16628 phiprm 16690 eulerthlem2 16695 pcelnn 16784 expnprm 16816 prmpwdvds 16818 pockthg 16820 odcau 19518 plyco 26174 dgrcolem1 26207 vieta1 26248 taylthlem1 26309 ftalem2 27012 vmaprm 27055 vma1 27104 1sgmprm 27138 chtublem 27150 fsumvma2 27153 chpchtsum 27158 logfacrlim2 27165 bposlem2 27224 bposlem6 27228 lgsval2lem 27246 2sqblem 27370 chebbnd1lem1 27408 rplogsumlem2 27424 rpvmasumlem 27426 ostth3 27577 cos9thpiminplylem1 33816 cos9thpiminplylem2 33817 cos9thpiminplylem3 33818 nn0prpwlem 36387 nn0prpw 36388 bfplem1 37882 dvrelogpow2b 42181 aks4d1p1p4 42184 aks4d1p1p7 42187 aks4d1p1p5 42188 aks4d1p1 42189 aks4d1p3 42191 aks4d1p8d2 42198 aks6d1c1p8 42228 2ap1caineq 42258 aks6d1c7 42297 readvrec2 42479 fltnltalem 42780 fltnlta 42781 3cubeslem3r 42804 rmxy1 43039 jm2.18 43105 jm2.23 43113 jm3.1lem2 43135 areaquad 43333 radcnvrat 44431 stoweidlem3 46125 wallispilem2 46188 stirlinglem1 46196 stirlinglem7 46202 stirlinglem10 46205 lighneal 47735 blenpw2m1 48704 |
| Copyright terms: Public domain | W3C validator |