| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp1d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp1d | ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp1 14090 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 1c1 11138 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 df-uz 12861 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: faclbnd4lem1 14314 fsumcube 16078 sin01gt0 16208 rplpwr 16577 prmdvdsexp 16734 phiprm 16796 eulerthlem2 16801 pcelnn 16890 expnprm 16922 prmpwdvds 16924 pockthg 16926 odcau 19590 plyco 26216 dgrcolem1 26249 vieta1 26290 taylthlem1 26351 ftalem2 27053 vmaprm 27096 vma1 27145 1sgmprm 27179 chtublem 27191 fsumvma2 27194 chpchtsum 27199 logfacrlim2 27206 bposlem2 27265 bposlem6 27269 lgsval2lem 27287 2sqblem 27411 chebbnd1lem1 27449 rplogsumlem2 27465 rpvmasumlem 27467 ostth3 27618 nn0prpwlem 36282 nn0prpw 36283 bfplem1 37788 dvrelogpow2b 42028 aks4d1p1p4 42031 aks4d1p1p7 42034 aks4d1p1p5 42035 aks4d1p1 42036 aks4d1p3 42038 aks4d1p8d2 42045 aks6d1c1p8 42075 2ap1caineq 42105 aks6d1c7 42144 readvrec2 42354 fltnltalem 42635 fltnlta 42636 3cubeslem3r 42661 rmxy1 42897 jm2.18 42963 jm2.23 42971 jm3.1lem2 42993 areaquad 43191 radcnvrat 44290 stoweidlem3 45975 wallispilem2 46038 stirlinglem1 46046 stirlinglem7 46052 stirlinglem10 46055 lighneal 47556 blenpw2m1 48458 |
| Copyright terms: Public domain | W3C validator |