Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exp1d | Structured version Visualization version GIF version |
Description: Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
exp1d | ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | exp1 13716 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: faclbnd4lem1 13935 fsumcube 15698 sin01gt0 15827 rplpwr 16195 prmdvdsexp 16348 phiprm 16406 eulerthlem2 16411 pcelnn 16499 expnprm 16531 prmpwdvds 16533 pockthg 16535 odcau 19124 plyco 25307 dgrcolem1 25339 vieta1 25377 taylthlem1 25437 ftalem2 26128 vmaprm 26171 vma1 26220 1sgmprm 26252 chtublem 26264 fsumvma2 26267 chpchtsum 26272 logfacrlim2 26279 bposlem2 26338 bposlem6 26342 lgsval2lem 26360 2sqblem 26484 chebbnd1lem1 26522 rplogsumlem2 26538 rpvmasumlem 26540 ostth3 26691 nn0prpwlem 34438 nn0prpw 34439 bfplem1 35907 dvrelogpow2b 40004 aks4d1p1p4 40007 aks4d1p1p7 40010 aks4d1p1p5 40011 aks4d1p1 40012 aks4d1p3 40014 aks4d1p8d2 40021 2ap1caineq 40029 fltnltalem 40415 fltnlta 40416 3cubeslem3r 40425 rmxy1 40660 jm2.18 40726 jm2.23 40734 jm3.1lem2 40756 areaquad 40963 radcnvrat 41821 stoweidlem3 43434 wallispilem2 43497 stirlinglem1 43505 stirlinglem7 43511 stirlinglem10 43514 lighneal 44951 blenpw2m1 45813 |
Copyright terms: Public domain | W3C validator |