MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exp1d Structured version   Visualization version   GIF version

Theorem exp1d 14181
Description: Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
expcld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
exp1d (𝜑 → (𝐴↑1) = 𝐴)

Proof of Theorem exp1d
StepHypRef Expression
1 expcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 exp1 14108 . 2 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
31, 2syl 17 1 (𝜑 → (𝐴↑1) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  (class class class)co 7431  cc 11153  1c1 11156  cexp 14102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-exp 14103
This theorem is referenced by:  faclbnd4lem1  14332  fsumcube  16096  sin01gt0  16226  rplpwr  16595  prmdvdsexp  16752  phiprm  16814  eulerthlem2  16819  pcelnn  16908  expnprm  16940  prmpwdvds  16942  pockthg  16944  odcau  19622  plyco  26280  dgrcolem1  26313  vieta1  26354  taylthlem1  26415  ftalem2  27117  vmaprm  27160  vma1  27209  1sgmprm  27243  chtublem  27255  fsumvma2  27258  chpchtsum  27263  logfacrlim2  27270  bposlem2  27329  bposlem6  27333  lgsval2lem  27351  2sqblem  27475  chebbnd1lem1  27513  rplogsumlem2  27529  rpvmasumlem  27531  ostth3  27682  nn0prpwlem  36323  nn0prpw  36324  bfplem1  37829  dvrelogpow2b  42069  aks4d1p1p4  42072  aks4d1p1p7  42075  aks4d1p1p5  42076  aks4d1p1  42077  aks4d1p3  42079  aks4d1p8d2  42086  aks6d1c1p8  42116  2ap1caineq  42146  aks6d1c7  42185  readvrec2  42391  fltnltalem  42672  fltnlta  42673  3cubeslem3r  42698  rmxy1  42934  jm2.18  43000  jm2.23  43008  jm3.1lem2  43030  areaquad  43228  radcnvrat  44333  stoweidlem3  46018  wallispilem2  46081  stirlinglem1  46089  stirlinglem7  46095  stirlinglem10  46098  lighneal  47598  blenpw2m1  48500
  Copyright terms: Public domain W3C validator