| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp1d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp1d | ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp1 14032 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: faclbnd4lem1 14258 fsumcube 16026 sin01gt0 16158 rplpwr 16528 prmdvdsexp 16685 phiprm 16747 eulerthlem2 16752 pcelnn 16841 expnprm 16873 prmpwdvds 16875 pockthg 16877 odcau 19534 plyco 26146 dgrcolem1 26179 vieta1 26220 taylthlem1 26281 ftalem2 26984 vmaprm 27027 vma1 27076 1sgmprm 27110 chtublem 27122 fsumvma2 27125 chpchtsum 27130 logfacrlim2 27137 bposlem2 27196 bposlem6 27200 lgsval2lem 27218 2sqblem 27342 chebbnd1lem1 27380 rplogsumlem2 27396 rpvmasumlem 27398 ostth3 27549 cos9thpiminplylem1 33772 cos9thpiminplylem2 33773 cos9thpiminplylem3 33774 nn0prpwlem 36310 nn0prpw 36311 bfplem1 37816 dvrelogpow2b 42056 aks4d1p1p4 42059 aks4d1p1p7 42062 aks4d1p1p5 42063 aks4d1p1 42064 aks4d1p3 42066 aks4d1p8d2 42073 aks6d1c1p8 42103 2ap1caineq 42133 aks6d1c7 42172 readvrec2 42349 fltnltalem 42650 fltnlta 42651 3cubeslem3r 42675 rmxy1 42911 jm2.18 42977 jm2.23 42985 jm3.1lem2 43007 areaquad 43205 radcnvrat 44303 stoweidlem3 46001 wallispilem2 46064 stirlinglem1 46072 stirlinglem7 46078 stirlinglem10 46081 lighneal 47612 blenpw2m1 48568 |
| Copyright terms: Public domain | W3C validator |