| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exp1d | Structured version Visualization version GIF version | ||
| Description: Value of a complex number raised to the first power. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| exp1d | ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | exp1 14108 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴↑1) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7431 ℂcc 11153 1c1 11156 ↑cexp 14102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-seq 14043 df-exp 14103 |
| This theorem is referenced by: faclbnd4lem1 14332 fsumcube 16096 sin01gt0 16226 rplpwr 16595 prmdvdsexp 16752 phiprm 16814 eulerthlem2 16819 pcelnn 16908 expnprm 16940 prmpwdvds 16942 pockthg 16944 odcau 19622 plyco 26280 dgrcolem1 26313 vieta1 26354 taylthlem1 26415 ftalem2 27117 vmaprm 27160 vma1 27209 1sgmprm 27243 chtublem 27255 fsumvma2 27258 chpchtsum 27263 logfacrlim2 27270 bposlem2 27329 bposlem6 27333 lgsval2lem 27351 2sqblem 27475 chebbnd1lem1 27513 rplogsumlem2 27529 rpvmasumlem 27531 ostth3 27682 nn0prpwlem 36323 nn0prpw 36324 bfplem1 37829 dvrelogpow2b 42069 aks4d1p1p4 42072 aks4d1p1p7 42075 aks4d1p1p5 42076 aks4d1p1 42077 aks4d1p3 42079 aks4d1p8d2 42086 aks6d1c1p8 42116 2ap1caineq 42146 aks6d1c7 42185 readvrec2 42391 fltnltalem 42672 fltnlta 42673 3cubeslem3r 42698 rmxy1 42934 jm2.18 43000 jm2.23 43008 jm3.1lem2 43030 areaquad 43228 radcnvrat 44333 stoweidlem3 46018 wallispilem2 46081 stirlinglem1 46089 stirlinglem7 46095 stirlinglem10 46098 lighneal 47598 blenpw2m1 48500 |
| Copyright terms: Public domain | W3C validator |