![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem21 | Structured version Visualization version GIF version |
Description: The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
lcmineqlem21.1 | โข (๐ โ ๐ โ โ) |
lcmineqlem21.2 | โข (๐ โ 4 โค ๐) |
Ref | Expression |
---|---|
lcmineqlem21 | โข (๐ โ (2โ((2 ยท ๐) + 2)) โค (lcmโ(1...((2 ยท ๐) + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12488 | . . . . 5 โข 2 โ โ0 | |
2 | 1 | a1i 11 | . . . 4 โข (๐ โ 2 โ โ0) |
3 | 2 | nn0red 12532 | . . 3 โข (๐ โ 2 โ โ) |
4 | lcmineqlem21.1 | . . . . . 6 โข (๐ โ ๐ โ โ) | |
5 | 4 | nnnn0d 12531 | . . . . 5 โข (๐ โ ๐ โ โ0) |
6 | 2, 5 | nn0mulcld 12536 | . . . 4 โข (๐ โ (2 ยท ๐) โ โ0) |
7 | 6, 2 | nn0addcld 12535 | . . 3 โข (๐ โ ((2 ยท ๐) + 2) โ โ0) |
8 | 3, 7 | reexpcld 14127 | . 2 โข (๐ โ (2โ((2 ยท ๐) + 2)) โ โ) |
9 | 4 | nnred 12226 | . . 3 โข (๐ โ ๐ โ โ) |
10 | 2rp 12978 | . . . . . 6 โข 2 โ โ+ | |
11 | 10 | a1i 11 | . . . . 5 โข (๐ โ 2 โ โ+) |
12 | 2z 12593 | . . . . . . 7 โข 2 โ โค | |
13 | 12 | a1i 11 | . . . . . 6 โข (๐ โ 2 โ โค) |
14 | 4 | nnzd 12584 | . . . . . 6 โข (๐ โ ๐ โ โค) |
15 | 13, 14 | zmulcld 12671 | . . . . 5 โข (๐ โ (2 ยท ๐) โ โค) |
16 | 11, 15 | rpexpcld 14209 | . . . 4 โข (๐ โ (2โ(2 ยท ๐)) โ โ+) |
17 | 16 | rpred 13015 | . . 3 โข (๐ โ (2โ(2 ยท ๐)) โ โ) |
18 | 9, 17 | remulcld 11243 | . 2 โข (๐ โ (๐ ยท (2โ(2 ยท ๐))) โ โ) |
19 | fz1ssnn 13531 | . . . . 5 โข (1...((2 ยท ๐) + 1)) โ โ | |
20 | fzfi 13936 | . . . . 5 โข (1...((2 ยท ๐) + 1)) โ Fin | |
21 | lcmfnncl 16565 | . . . . 5 โข (((1...((2 ยท ๐) + 1)) โ โ โง (1...((2 ยท ๐) + 1)) โ Fin) โ (lcmโ(1...((2 ยท ๐) + 1))) โ โ) | |
22 | 19, 20, 21 | mp2an 690 | . . . 4 โข (lcmโ(1...((2 ยท ๐) + 1))) โ โ |
23 | 22 | a1i 11 | . . 3 โข (๐ โ (lcmโ(1...((2 ยท ๐) + 1))) โ โ) |
24 | 23 | nnred 12226 | . 2 โข (๐ โ (lcmโ(1...((2 ยท ๐) + 1))) โ โ) |
25 | lcmineqlem21.2 | . . . 4 โข (๐ โ 4 โค ๐) | |
26 | 4re 12295 | . . . . . 6 โข 4 โ โ | |
27 | 26 | a1i 11 | . . . . 5 โข (๐ โ 4 โ โ) |
28 | 27, 9, 16 | lemul1d 13058 | . . . 4 โข (๐ โ (4 โค ๐ โ (4 ยท (2โ(2 ยท ๐))) โค (๐ ยท (2โ(2 ยท ๐))))) |
29 | 25, 28 | mpbid 231 | . . 3 โข (๐ โ (4 ยท (2โ(2 ยท ๐))) โค (๐ ยท (2โ(2 ยท ๐)))) |
30 | 2cnd 12289 | . . . . . . 7 โข (๐ โ 2 โ โ) | |
31 | 30, 2, 6 | expaddd 14112 | . . . . . 6 โข (๐ โ (2โ((2 ยท ๐) + 2)) = ((2โ(2 ยท ๐)) ยท (2โ2))) |
32 | sq2 14160 | . . . . . . 7 โข (2โ2) = 4 | |
33 | 32 | oveq2i 7419 | . . . . . 6 โข ((2โ(2 ยท ๐)) ยท (2โ2)) = ((2โ(2 ยท ๐)) ยท 4) |
34 | 31, 33 | eqtrdi 2788 | . . . . 5 โข (๐ โ (2โ((2 ยท ๐) + 2)) = ((2โ(2 ยท ๐)) ยท 4)) |
35 | 16 | rpcnd 13017 | . . . . . 6 โข (๐ โ (2โ(2 ยท ๐)) โ โ) |
36 | 27 | recnd 11241 | . . . . . 6 โข (๐ โ 4 โ โ) |
37 | 35, 36 | mulcomd 11234 | . . . . 5 โข (๐ โ ((2โ(2 ยท ๐)) ยท 4) = (4 ยท (2โ(2 ยท ๐)))) |
38 | 34, 37 | eqtrd 2772 | . . . 4 โข (๐ โ (2โ((2 ยท ๐) + 2)) = (4 ยท (2โ(2 ยท ๐)))) |
39 | 38 | breq1d 5158 | . . 3 โข (๐ โ ((2โ((2 ยท ๐) + 2)) โค (๐ ยท (2โ(2 ยท ๐))) โ (4 ยท (2โ(2 ยท ๐))) โค (๐ ยท (2โ(2 ยท ๐))))) |
40 | 29, 39 | mpbird 256 | . 2 โข (๐ โ (2โ((2 ยท ๐) + 2)) โค (๐ ยท (2โ(2 ยท ๐)))) |
41 | 4 | lcmineqlem20 40908 | . 2 โข (๐ โ (๐ ยท (2โ(2 ยท ๐))) โค (lcmโ(1...((2 ยท ๐) + 1)))) |
42 | 8, 18, 24, 40, 41 | letrd 11370 | 1 โข (๐ โ (2โ((2 ยท ๐) + 2)) โค (lcmโ(1...((2 ยท ๐) + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wcel 2106 โ wss 3948 class class class wbr 5148 โcfv 6543 (class class class)co 7408 Fincfn 8938 โcr 11108 1c1 11110 + caddc 11112 ยท cmul 11114 โค cle 11248 โcn 12211 2c2 12266 4c4 12268 โ0cn0 12471 โคcz 12557 โ+crp 12973 ...cfz 13483 โcexp 14026 lcmclcmf 16525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-symdif 4242 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-ofr 7670 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-omul 8470 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-dju 9895 df-card 9933 df-acn 9936 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ioo 13327 df-ioc 13328 df-ico 13329 df-icc 13330 df-fz 13484 df-fzo 13627 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-fac 14233 df-bc 14262 df-hash 14290 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15632 df-prod 15849 df-dvds 16197 df-gcd 16435 df-lcm 16526 df-lcmf 16527 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-mulg 18950 df-cntz 19180 df-cmn 19649 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-fbas 20940 df-fg 20941 df-cnfld 20944 df-top 22395 df-topon 22412 df-topsp 22434 df-bases 22448 df-cld 22522 df-ntr 22523 df-cls 22524 df-nei 22601 df-lp 22639 df-perf 22640 df-cn 22730 df-cnp 22731 df-haus 22818 df-cmp 22890 df-tx 23065 df-hmeo 23258 df-fil 23349 df-fm 23441 df-flim 23442 df-flf 23443 df-xms 23825 df-ms 23826 df-tms 23827 df-cncf 24393 df-ovol 24980 df-vol 24981 df-mbf 25135 df-itg1 25136 df-itg2 25137 df-ibl 25138 df-itg 25139 df-0p 25186 df-limc 25382 df-dv 25383 |
This theorem is referenced by: lcmineqlem22 40910 |
Copyright terms: Public domain | W3C validator |