Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem21 | Structured version Visualization version GIF version |
Description: The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
lcmineqlem21.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
lcmineqlem21.2 | ⊢ (𝜑 → 4 ≤ 𝑁) |
Ref | Expression |
---|---|
lcmineqlem21 | ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12355 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ0) |
3 | 2 | nn0red 12399 | . . 3 ⊢ (𝜑 → 2 ∈ ℝ) |
4 | lcmineqlem21.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
5 | 4 | nnnn0d 12398 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
6 | 2, 5 | nn0mulcld 12403 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ∈ ℕ0) |
7 | 6, 2 | nn0addcld 12402 | . . 3 ⊢ (𝜑 → ((2 · 𝑁) + 2) ∈ ℕ0) |
8 | 3, 7 | reexpcld 13986 | . 2 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ∈ ℝ) |
9 | 4 | nnred 12093 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
10 | 2rp 12840 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ+) |
12 | 2z 12457 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
14 | 4 | nnzd 12530 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
15 | 13, 14 | zmulcld 12537 | . . . . 5 ⊢ (𝜑 → (2 · 𝑁) ∈ ℤ) |
16 | 11, 15 | rpexpcld 14067 | . . . 4 ⊢ (𝜑 → (2↑(2 · 𝑁)) ∈ ℝ+) |
17 | 16 | rpred 12877 | . . 3 ⊢ (𝜑 → (2↑(2 · 𝑁)) ∈ ℝ) |
18 | 9, 17 | remulcld 11110 | . 2 ⊢ (𝜑 → (𝑁 · (2↑(2 · 𝑁))) ∈ ℝ) |
19 | fz1ssnn 13392 | . . . . 5 ⊢ (1...((2 · 𝑁) + 1)) ⊆ ℕ | |
20 | fzfi 13797 | . . . . 5 ⊢ (1...((2 · 𝑁) + 1)) ∈ Fin | |
21 | lcmfnncl 16431 | . . . . 5 ⊢ (((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 1)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) | |
22 | 19, 20, 21 | mp2an 690 | . . . 4 ⊢ (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ |
23 | 22 | a1i 11 | . . 3 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) |
24 | 23 | nnred 12093 | . 2 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℝ) |
25 | lcmineqlem21.2 | . . . 4 ⊢ (𝜑 → 4 ≤ 𝑁) | |
26 | 4re 12162 | . . . . . 6 ⊢ 4 ∈ ℝ | |
27 | 26 | a1i 11 | . . . . 5 ⊢ (𝜑 → 4 ∈ ℝ) |
28 | 27, 9, 16 | lemul1d 12920 | . . . 4 ⊢ (𝜑 → (4 ≤ 𝑁 ↔ (4 · (2↑(2 · 𝑁))) ≤ (𝑁 · (2↑(2 · 𝑁))))) |
29 | 25, 28 | mpbid 231 | . . 3 ⊢ (𝜑 → (4 · (2↑(2 · 𝑁))) ≤ (𝑁 · (2↑(2 · 𝑁)))) |
30 | 2cnd 12156 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℂ) | |
31 | 30, 2, 6 | expaddd 13971 | . . . . . 6 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) = ((2↑(2 · 𝑁)) · (2↑2))) |
32 | sq2 14019 | . . . . . . 7 ⊢ (2↑2) = 4 | |
33 | 32 | oveq2i 7352 | . . . . . 6 ⊢ ((2↑(2 · 𝑁)) · (2↑2)) = ((2↑(2 · 𝑁)) · 4) |
34 | 31, 33 | eqtrdi 2793 | . . . . 5 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) = ((2↑(2 · 𝑁)) · 4)) |
35 | 16 | rpcnd 12879 | . . . . . 6 ⊢ (𝜑 → (2↑(2 · 𝑁)) ∈ ℂ) |
36 | 27 | recnd 11108 | . . . . . 6 ⊢ (𝜑 → 4 ∈ ℂ) |
37 | 35, 36 | mulcomd 11101 | . . . . 5 ⊢ (𝜑 → ((2↑(2 · 𝑁)) · 4) = (4 · (2↑(2 · 𝑁)))) |
38 | 34, 37 | eqtrd 2777 | . . . 4 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) = (4 · (2↑(2 · 𝑁)))) |
39 | 38 | breq1d 5106 | . . 3 ⊢ (𝜑 → ((2↑((2 · 𝑁) + 2)) ≤ (𝑁 · (2↑(2 · 𝑁))) ↔ (4 · (2↑(2 · 𝑁))) ≤ (𝑁 · (2↑(2 · 𝑁))))) |
40 | 29, 39 | mpbird 257 | . 2 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (𝑁 · (2↑(2 · 𝑁)))) |
41 | 4 | lcmineqlem20 40361 | . 2 ⊢ (𝜑 → (𝑁 · (2↑(2 · 𝑁))) ≤ (lcm‘(1...((2 · 𝑁) + 1)))) |
42 | 8, 18, 24, 40, 41 | letrd 11237 | 1 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3901 class class class wbr 5096 ‘cfv 6483 (class class class)co 7341 Fincfn 8808 ℝcr 10975 1c1 10977 + caddc 10979 · cmul 10981 ≤ cle 11115 ℕcn 12078 2c2 12133 4c4 12135 ℕ0cn0 12338 ℤcz 12424 ℝ+crp 12835 ...cfz 13344 ↑cexp 13887 lcmclcmf 16391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cc 10296 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 ax-addf 11055 ax-mulf 11056 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-symdif 4193 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-disj 5062 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-ofr 7600 df-om 7785 df-1st 7903 df-2nd 7904 df-supp 8052 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-oadd 8375 df-omul 8376 df-er 8573 df-map 8692 df-pm 8693 df-ixp 8761 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-fsupp 9231 df-fi 9272 df-sup 9303 df-inf 9304 df-oi 9371 df-dju 9762 df-card 9800 df-acn 9803 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-q 12794 df-rp 12836 df-xneg 12953 df-xadd 12954 df-xmul 12955 df-ioo 13188 df-ioc 13189 df-ico 13190 df-icc 13191 df-fz 13345 df-fzo 13488 df-fl 13617 df-mod 13695 df-seq 13827 df-exp 13888 df-fac 14093 df-bc 14122 df-hash 14150 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-limsup 15279 df-clim 15296 df-rlim 15297 df-sum 15497 df-prod 15715 df-dvds 16063 df-gcd 16301 df-lcm 16392 df-lcmf 16393 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-starv 17074 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-unif 17082 df-hom 17083 df-cco 17084 df-rest 17230 df-topn 17231 df-0g 17249 df-gsum 17250 df-topgen 17251 df-pt 17252 df-prds 17255 df-xrs 17310 df-qtop 17315 df-imas 17316 df-xps 17318 df-mre 17392 df-mrc 17393 df-acs 17395 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-submnd 18528 df-mulg 18797 df-cntz 19019 df-cmn 19483 df-psmet 20694 df-xmet 20695 df-met 20696 df-bl 20697 df-mopn 20698 df-fbas 20699 df-fg 20700 df-cnfld 20703 df-top 22148 df-topon 22165 df-topsp 22187 df-bases 22201 df-cld 22275 df-ntr 22276 df-cls 22277 df-nei 22354 df-lp 22392 df-perf 22393 df-cn 22483 df-cnp 22484 df-haus 22571 df-cmp 22643 df-tx 22818 df-hmeo 23011 df-fil 23102 df-fm 23194 df-flim 23195 df-flf 23196 df-xms 23578 df-ms 23579 df-tms 23580 df-cncf 24146 df-ovol 24733 df-vol 24734 df-mbf 24888 df-itg1 24889 df-itg2 24890 df-ibl 24891 df-itg 24892 df-0p 24939 df-limc 25135 df-dv 25136 |
This theorem is referenced by: lcmineqlem22 40363 |
Copyright terms: Public domain | W3C validator |