Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem21 Structured version   Visualization version   GIF version

Theorem lcmineqlem21 42050
Description: The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.)
Hypotheses
Ref Expression
lcmineqlem21.1 (𝜑𝑁 ∈ ℕ)
lcmineqlem21.2 (𝜑 → 4 ≤ 𝑁)
Assertion
Ref Expression
lcmineqlem21 (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1))))

Proof of Theorem lcmineqlem21
StepHypRef Expression
1 2nn0 12543 . . . . 5 2 ∈ ℕ0
21a1i 11 . . . 4 (𝜑 → 2 ∈ ℕ0)
32nn0red 12588 . . 3 (𝜑 → 2 ∈ ℝ)
4 lcmineqlem21.1 . . . . . 6 (𝜑𝑁 ∈ ℕ)
54nnnn0d 12587 . . . . 5 (𝜑𝑁 ∈ ℕ0)
62, 5nn0mulcld 12592 . . . 4 (𝜑 → (2 · 𝑁) ∈ ℕ0)
76, 2nn0addcld 12591 . . 3 (𝜑 → ((2 · 𝑁) + 2) ∈ ℕ0)
83, 7reexpcld 14203 . 2 (𝜑 → (2↑((2 · 𝑁) + 2)) ∈ ℝ)
94nnred 12281 . . 3 (𝜑𝑁 ∈ ℝ)
10 2rp 13039 . . . . . 6 2 ∈ ℝ+
1110a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ+)
12 2z 12649 . . . . . . 7 2 ∈ ℤ
1312a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℤ)
144nnzd 12640 . . . . . 6 (𝜑𝑁 ∈ ℤ)
1513, 14zmulcld 12728 . . . . 5 (𝜑 → (2 · 𝑁) ∈ ℤ)
1611, 15rpexpcld 14286 . . . 4 (𝜑 → (2↑(2 · 𝑁)) ∈ ℝ+)
1716rpred 13077 . . 3 (𝜑 → (2↑(2 · 𝑁)) ∈ ℝ)
189, 17remulcld 11291 . 2 (𝜑 → (𝑁 · (2↑(2 · 𝑁))) ∈ ℝ)
19 fz1ssnn 13595 . . . . 5 (1...((2 · 𝑁) + 1)) ⊆ ℕ
20 fzfi 14013 . . . . 5 (1...((2 · 𝑁) + 1)) ∈ Fin
21 lcmfnncl 16666 . . . . 5 (((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 1)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
2219, 20, 21mp2an 692 . . . 4 (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ
2322a1i 11 . . 3 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ)
2423nnred 12281 . 2 (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℝ)
25 lcmineqlem21.2 . . . 4 (𝜑 → 4 ≤ 𝑁)
26 4re 12350 . . . . . 6 4 ∈ ℝ
2726a1i 11 . . . . 5 (𝜑 → 4 ∈ ℝ)
2827, 9, 16lemul1d 13120 . . . 4 (𝜑 → (4 ≤ 𝑁 ↔ (4 · (2↑(2 · 𝑁))) ≤ (𝑁 · (2↑(2 · 𝑁)))))
2925, 28mpbid 232 . . 3 (𝜑 → (4 · (2↑(2 · 𝑁))) ≤ (𝑁 · (2↑(2 · 𝑁))))
30 2cnd 12344 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
3130, 2, 6expaddd 14188 . . . . . 6 (𝜑 → (2↑((2 · 𝑁) + 2)) = ((2↑(2 · 𝑁)) · (2↑2)))
32 sq2 14236 . . . . . . 7 (2↑2) = 4
3332oveq2i 7442 . . . . . 6 ((2↑(2 · 𝑁)) · (2↑2)) = ((2↑(2 · 𝑁)) · 4)
3431, 33eqtrdi 2793 . . . . 5 (𝜑 → (2↑((2 · 𝑁) + 2)) = ((2↑(2 · 𝑁)) · 4))
3516rpcnd 13079 . . . . . 6 (𝜑 → (2↑(2 · 𝑁)) ∈ ℂ)
3627recnd 11289 . . . . . 6 (𝜑 → 4 ∈ ℂ)
3735, 36mulcomd 11282 . . . . 5 (𝜑 → ((2↑(2 · 𝑁)) · 4) = (4 · (2↑(2 · 𝑁))))
3834, 37eqtrd 2777 . . . 4 (𝜑 → (2↑((2 · 𝑁) + 2)) = (4 · (2↑(2 · 𝑁))))
3938breq1d 5153 . . 3 (𝜑 → ((2↑((2 · 𝑁) + 2)) ≤ (𝑁 · (2↑(2 · 𝑁))) ↔ (4 · (2↑(2 · 𝑁))) ≤ (𝑁 · (2↑(2 · 𝑁)))))
4029, 39mpbird 257 . 2 (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (𝑁 · (2↑(2 · 𝑁))))
414lcmineqlem20 42049 . 2 (𝜑 → (𝑁 · (2↑(2 · 𝑁))) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
428, 18, 24, 40, 41letrd 11418 1 (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  Fincfn 8985  cr 11154  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cn 12266  2c2 12321  4c4 12323  0cn0 12526  cz 12613  +crp 13034  ...cfz 13547  cexp 14102  lcmclcmf 16626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-prod 15940  df-dvds 16291  df-gcd 16532  df-lcm 16627  df-lcmf 16628  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902
This theorem is referenced by:  lcmineqlem22  42051
  Copyright terms: Public domain W3C validator