| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem21 | Structured version Visualization version GIF version | ||
| Description: The lcm inequality lemma without base cases 7 and 8. (Contributed by metakunt, 12-May-2024.) |
| Ref | Expression |
|---|---|
| lcmineqlem21.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| lcmineqlem21.2 | ⊢ (𝜑 → 4 ≤ 𝑁) |
| Ref | Expression |
|---|---|
| lcmineqlem21 | ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 12419 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ∈ ℕ0) |
| 3 | 2 | nn0red 12464 | . . 3 ⊢ (𝜑 → 2 ∈ ℝ) |
| 4 | lcmineqlem21.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 5 | 4 | nnnn0d 12463 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 6 | 2, 5 | nn0mulcld 12468 | . . . 4 ⊢ (𝜑 → (2 · 𝑁) ∈ ℕ0) |
| 7 | 6, 2 | nn0addcld 12467 | . . 3 ⊢ (𝜑 → ((2 · 𝑁) + 2) ∈ ℕ0) |
| 8 | 3, 7 | reexpcld 14088 | . 2 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ∈ ℝ) |
| 9 | 4 | nnred 12161 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 10 | 2rp 12916 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ+) |
| 12 | 2z 12525 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 13 | 12 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
| 14 | 4 | nnzd 12516 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 15 | 13, 14 | zmulcld 12604 | . . . . 5 ⊢ (𝜑 → (2 · 𝑁) ∈ ℤ) |
| 16 | 11, 15 | rpexpcld 14172 | . . . 4 ⊢ (𝜑 → (2↑(2 · 𝑁)) ∈ ℝ+) |
| 17 | 16 | rpred 12955 | . . 3 ⊢ (𝜑 → (2↑(2 · 𝑁)) ∈ ℝ) |
| 18 | 9, 17 | remulcld 11164 | . 2 ⊢ (𝜑 → (𝑁 · (2↑(2 · 𝑁))) ∈ ℝ) |
| 19 | fz1ssnn 13476 | . . . . 5 ⊢ (1...((2 · 𝑁) + 1)) ⊆ ℕ | |
| 20 | fzfi 13897 | . . . . 5 ⊢ (1...((2 · 𝑁) + 1)) ∈ Fin | |
| 21 | lcmfnncl 16558 | . . . . 5 ⊢ (((1...((2 · 𝑁) + 1)) ⊆ ℕ ∧ (1...((2 · 𝑁) + 1)) ∈ Fin) → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) | |
| 22 | 19, 20, 21 | mp2an 692 | . . . 4 ⊢ (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ |
| 23 | 22 | a1i 11 | . . 3 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℕ) |
| 24 | 23 | nnred 12161 | . 2 ⊢ (𝜑 → (lcm‘(1...((2 · 𝑁) + 1))) ∈ ℝ) |
| 25 | lcmineqlem21.2 | . . . 4 ⊢ (𝜑 → 4 ≤ 𝑁) | |
| 26 | 4re 12230 | . . . . . 6 ⊢ 4 ∈ ℝ | |
| 27 | 26 | a1i 11 | . . . . 5 ⊢ (𝜑 → 4 ∈ ℝ) |
| 28 | 27, 9, 16 | lemul1d 12998 | . . . 4 ⊢ (𝜑 → (4 ≤ 𝑁 ↔ (4 · (2↑(2 · 𝑁))) ≤ (𝑁 · (2↑(2 · 𝑁))))) |
| 29 | 25, 28 | mpbid 232 | . . 3 ⊢ (𝜑 → (4 · (2↑(2 · 𝑁))) ≤ (𝑁 · (2↑(2 · 𝑁)))) |
| 30 | 2cnd 12224 | . . . . . . 7 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 31 | 30, 2, 6 | expaddd 14073 | . . . . . 6 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) = ((2↑(2 · 𝑁)) · (2↑2))) |
| 32 | sq2 14122 | . . . . . . 7 ⊢ (2↑2) = 4 | |
| 33 | 32 | oveq2i 7364 | . . . . . 6 ⊢ ((2↑(2 · 𝑁)) · (2↑2)) = ((2↑(2 · 𝑁)) · 4) |
| 34 | 31, 33 | eqtrdi 2780 | . . . . 5 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) = ((2↑(2 · 𝑁)) · 4)) |
| 35 | 16 | rpcnd 12957 | . . . . . 6 ⊢ (𝜑 → (2↑(2 · 𝑁)) ∈ ℂ) |
| 36 | 27 | recnd 11162 | . . . . . 6 ⊢ (𝜑 → 4 ∈ ℂ) |
| 37 | 35, 36 | mulcomd 11155 | . . . . 5 ⊢ (𝜑 → ((2↑(2 · 𝑁)) · 4) = (4 · (2↑(2 · 𝑁)))) |
| 38 | 34, 37 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) = (4 · (2↑(2 · 𝑁)))) |
| 39 | 38 | breq1d 5105 | . . 3 ⊢ (𝜑 → ((2↑((2 · 𝑁) + 2)) ≤ (𝑁 · (2↑(2 · 𝑁))) ↔ (4 · (2↑(2 · 𝑁))) ≤ (𝑁 · (2↑(2 · 𝑁))))) |
| 40 | 29, 39 | mpbird 257 | . 2 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (𝑁 · (2↑(2 · 𝑁)))) |
| 41 | 4 | lcmineqlem20 42021 | . 2 ⊢ (𝜑 → (𝑁 · (2↑(2 · 𝑁))) ≤ (lcm‘(1...((2 · 𝑁) + 1)))) |
| 42 | 8, 18, 24, 40, 41 | letrd 11291 | 1 ⊢ (𝜑 → (2↑((2 · 𝑁) + 2)) ≤ (lcm‘(1...((2 · 𝑁) + 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 ℝcr 11027 1c1 11029 + caddc 11031 · cmul 11033 ≤ cle 11169 ℕcn 12146 2c2 12201 4c4 12203 ℕ0cn0 12402 ℤcz 12489 ℝ+crp 12911 ...cfz 13428 ↑cexp 13986 lcmclcmf 16518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-symdif 4206 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-prod 15829 df-dvds 16182 df-gcd 16424 df-lcm 16519 df-lcmf 16520 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-ovol 25381 df-vol 25382 df-mbf 25536 df-itg1 25537 df-itg2 25538 df-ibl 25539 df-itg 25540 df-0p 25587 df-limc 25783 df-dv 25784 |
| This theorem is referenced by: lcmineqlem22 42023 |
| Copyright terms: Public domain | W3C validator |