| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoppccic | Structured version Visualization version GIF version | ||
| Description: The opposite category of functors is isomorphic to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fucoppccic.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| fucoppccic.b | ⊢ 𝐵 = (Base‘𝐶) |
| fucoppccic.x | ⊢ 𝑋 = (oppCat‘(𝐷 FuncCat 𝐸)) |
| fucoppccic.y | ⊢ 𝑌 = ((oppCat‘𝐷) FuncCat (oppCat‘𝐸)) |
| fucoppccic.xb | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fucoppccic.yb | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| fucoppccic.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| fucoppccic.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fucoppccic | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 2 | fucoppccic.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | fucoppccic.xb | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | fucoppccic.c | . . . 4 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 5 | 4, 2 | elbasfv 17161 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑈 ∈ V) |
| 6 | 4 | catccat 18046 | . . 3 ⊢ (𝑈 ∈ V → 𝐶 ∈ Cat) |
| 7 | 3, 5, 6 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | fucoppccic.yb | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | eqid 2729 | . . . 4 ⊢ (oppCat‘𝐷) = (oppCat‘𝐷) | |
| 10 | eqid 2729 | . . . 4 ⊢ (oppCat‘𝐸) = (oppCat‘𝐸) | |
| 11 | eqid 2729 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 12 | fucoppccic.x | . . . 4 ⊢ 𝑋 = (oppCat‘(𝐷 FuncCat 𝐸)) | |
| 13 | fucoppccic.y | . . . 4 ⊢ 𝑌 = ((oppCat‘𝐷) FuncCat (oppCat‘𝐸)) | |
| 14 | eqid 2729 | . . . 4 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 15 | eqidd 2730 | . . . 4 ⊢ (𝜑 → ( oppFunc ↾ (𝐷 Func 𝐸)) = ( oppFunc ↾ (𝐷 Func 𝐸))) | |
| 16 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓))) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))) | |
| 17 | fucoppccic.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 18 | fucoppccic.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 19 | 9, 10, 11, 12, 13, 14, 15, 16, 4, 2, 1, 17, 18, 3, 8 | fucoppc 49372 | . . 3 ⊢ (𝜑 → ( oppFunc ↾ (𝐷 Func 𝐸))(𝑋(Iso‘𝐶)𝑌)(𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))) |
| 20 | df-br 5103 | . . 3 ⊢ (( oppFunc ↾ (𝐷 Func 𝐸))(𝑋(Iso‘𝐶)𝑌)(𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓))) ↔ 〈( oppFunc ↾ (𝐷 Func 𝐸)), (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))〉 ∈ (𝑋(Iso‘𝐶)𝑌)) | |
| 21 | 19, 20 | sylib 218 | . 2 ⊢ (𝜑 → 〈( oppFunc ↾ (𝐷 Func 𝐸)), (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))〉 ∈ (𝑋(Iso‘𝐶)𝑌)) |
| 22 | 1, 2, 7, 3, 8, 21 | brcici 17738 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 class class class wbr 5102 I cid 5525 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Basecbs 17155 Catccat 17601 oppCatcoppc 17648 Isociso 17684 ≃𝑐 ccic 17733 Func cfunc 17792 Nat cnat 17882 FuncCat cfuc 17883 CatCatccatc 18036 oppFunc coppf 49084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17605 df-cid 17606 df-homf 17607 df-comf 17608 df-oppc 17649 df-sect 17685 df-inv 17686 df-iso 17687 df-cic 17734 df-func 17796 df-idfu 17797 df-cofu 17798 df-full 17844 df-fth 17845 df-nat 17884 df-fuc 17885 df-catc 18037 df-oppf 49085 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |