Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoppccic Structured version   Visualization version   GIF version

Theorem fucoppccic 49574
Description: The opposite category of functors is isomorphic to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.)
Hypotheses
Ref Expression
fucoppccic.c 𝐶 = (CatCat‘𝑈)
fucoppccic.b 𝐵 = (Base‘𝐶)
fucoppccic.x 𝑋 = (oppCat‘(𝐷 FuncCat 𝐸))
fucoppccic.y 𝑌 = ((oppCat‘𝐷) FuncCat (oppCat‘𝐸))
fucoppccic.xb (𝜑𝑋𝐵)
fucoppccic.yb (𝜑𝑌𝐵)
fucoppccic.d (𝜑𝐷𝑉)
fucoppccic.e (𝜑𝐸𝑊)
Assertion
Ref Expression
fucoppccic (𝜑𝑋( ≃𝑐𝐶)𝑌)

Proof of Theorem fucoppccic
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (Iso‘𝐶) = (Iso‘𝐶)
2 fucoppccic.b . 2 𝐵 = (Base‘𝐶)
3 fucoppccic.xb . . 3 (𝜑𝑋𝐵)
4 fucoppccic.c . . . 4 𝐶 = (CatCat‘𝑈)
54, 2elbasfv 17133 . . 3 (𝑋𝐵𝑈 ∈ V)
64catccat 18023 . . 3 (𝑈 ∈ V → 𝐶 ∈ Cat)
73, 5, 63syl 18 . 2 (𝜑𝐶 ∈ Cat)
8 fucoppccic.yb . 2 (𝜑𝑌𝐵)
9 eqid 2733 . . . 4 (oppCat‘𝐷) = (oppCat‘𝐷)
10 eqid 2733 . . . 4 (oppCat‘𝐸) = (oppCat‘𝐸)
11 eqid 2733 . . . 4 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
12 fucoppccic.x . . . 4 𝑋 = (oppCat‘(𝐷 FuncCat 𝐸))
13 fucoppccic.y . . . 4 𝑌 = ((oppCat‘𝐷) FuncCat (oppCat‘𝐸))
14 eqid 2733 . . . 4 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
15 eqidd 2734 . . . 4 (𝜑 → ( oppFunc ↾ (𝐷 Func 𝐸)) = ( oppFunc ↾ (𝐷 Func 𝐸)))
16 eqidd 2734 . . . 4 (𝜑 → (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓))) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓))))
17 fucoppccic.d . . . 4 (𝜑𝐷𝑉)
18 fucoppccic.e . . . 4 (𝜑𝐸𝑊)
199, 10, 11, 12, 13, 14, 15, 16, 4, 2, 1, 17, 18, 3, 8fucoppc 49571 . . 3 (𝜑 → ( oppFunc ↾ (𝐷 Func 𝐸))(𝑋(Iso‘𝐶)𝑌)(𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓))))
20 df-br 5096 . . 3 (( oppFunc ↾ (𝐷 Func 𝐸))(𝑋(Iso‘𝐶)𝑌)(𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓))) ↔ ⟨( oppFunc ↾ (𝐷 Func 𝐸)), (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))⟩ ∈ (𝑋(Iso‘𝐶)𝑌))
2119, 20sylib 218 . 2 (𝜑 → ⟨( oppFunc ↾ (𝐷 Func 𝐸)), (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))⟩ ∈ (𝑋(Iso‘𝐶)𝑌))
221, 2, 7, 3, 8, 21brcici 17715 1 (𝜑𝑋( ≃𝑐𝐶)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cop 4583   class class class wbr 5095   I cid 5515  cres 5623  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17127  Catccat 17578  oppCatcoppc 17625  Isociso 17661  𝑐 ccic 17710   Func cfunc 17769   Nat cnat 17859   FuncCat cfuc 17860  CatCatccatc 18013   oppFunc coppf 49283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-cat 17582  df-cid 17583  df-homf 17584  df-comf 17585  df-oppc 17626  df-sect 17662  df-inv 17663  df-iso 17664  df-cic 17711  df-func 17773  df-idfu 17774  df-cofu 17775  df-full 17821  df-fth 17822  df-nat 17861  df-fuc 17862  df-catc 18014  df-oppf 49284
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator