| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoppccic | Structured version Visualization version GIF version | ||
| Description: The opposite category of functors is isomorphic to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fucoppccic.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| fucoppccic.b | ⊢ 𝐵 = (Base‘𝐶) |
| fucoppccic.x | ⊢ 𝑋 = (oppCat‘(𝐷 FuncCat 𝐸)) |
| fucoppccic.y | ⊢ 𝑌 = ((oppCat‘𝐷) FuncCat (oppCat‘𝐸)) |
| fucoppccic.xb | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| fucoppccic.yb | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| fucoppccic.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| fucoppccic.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fucoppccic | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 2 | fucoppccic.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | fucoppccic.xb | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | fucoppccic.c | . . . 4 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 5 | 4, 2 | elbasfv 17145 | . . 3 ⊢ (𝑋 ∈ 𝐵 → 𝑈 ∈ V) |
| 6 | 4 | catccat 18034 | . . 3 ⊢ (𝑈 ∈ V → 𝐶 ∈ Cat) |
| 7 | 3, 5, 6 | 3syl 18 | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | fucoppccic.yb | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | eqid 2729 | . . . 4 ⊢ (oppCat‘𝐷) = (oppCat‘𝐷) | |
| 10 | eqid 2729 | . . . 4 ⊢ (oppCat‘𝐸) = (oppCat‘𝐸) | |
| 11 | eqid 2729 | . . . 4 ⊢ (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸) | |
| 12 | fucoppccic.x | . . . 4 ⊢ 𝑋 = (oppCat‘(𝐷 FuncCat 𝐸)) | |
| 13 | fucoppccic.y | . . . 4 ⊢ 𝑌 = ((oppCat‘𝐷) FuncCat (oppCat‘𝐸)) | |
| 14 | eqid 2729 | . . . 4 ⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) | |
| 15 | eqidd 2730 | . . . 4 ⊢ (𝜑 → ( oppFunc ↾ (𝐷 Func 𝐸)) = ( oppFunc ↾ (𝐷 Func 𝐸))) | |
| 16 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓))) = (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))) | |
| 17 | fucoppccic.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 18 | fucoppccic.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
| 19 | 9, 10, 11, 12, 13, 14, 15, 16, 4, 2, 1, 17, 18, 3, 8 | fucoppc 49415 | . . 3 ⊢ (𝜑 → ( oppFunc ↾ (𝐷 Func 𝐸))(𝑋(Iso‘𝐶)𝑌)(𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))) |
| 20 | df-br 5096 | . . 3 ⊢ (( oppFunc ↾ (𝐷 Func 𝐸))(𝑋(Iso‘𝐶)𝑌)(𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓))) ↔ 〈( oppFunc ↾ (𝐷 Func 𝐸)), (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))〉 ∈ (𝑋(Iso‘𝐶)𝑌)) | |
| 21 | 19, 20 | sylib 218 | . 2 ⊢ (𝜑 → 〈( oppFunc ↾ (𝐷 Func 𝐸)), (𝑓 ∈ (𝐷 Func 𝐸), 𝑔 ∈ (𝐷 Func 𝐸) ↦ ( I ↾ (𝑔(𝐷 Nat 𝐸)𝑓)))〉 ∈ (𝑋(Iso‘𝐶)𝑌)) |
| 22 | 1, 2, 7, 3, 8, 21 | brcici 17726 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 class class class wbr 5095 I cid 5517 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17139 Catccat 17589 oppCatcoppc 17636 Isociso 17672 ≃𝑐 ccic 17721 Func cfunc 17780 Nat cnat 17870 FuncCat cfuc 17871 CatCatccatc 18024 oppFunc coppf 49127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-hom 17204 df-cco 17205 df-cat 17593 df-cid 17594 df-homf 17595 df-comf 17596 df-oppc 17637 df-sect 17673 df-inv 17674 df-iso 17675 df-cic 17722 df-func 17784 df-idfu 17785 df-cofu 17786 df-full 17832 df-fth 17833 df-nat 17872 df-fuc 17873 df-catc 18025 df-oppf 49128 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |