![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1vard | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for the variable. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1var.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1var.v | ⊢ 𝑋 = (var1‘𝑅) |
evl1var.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1vard.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1vard.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1vard.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1vard.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
evl1vard | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∧ ((𝑂‘𝑋)‘𝑌) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1vard.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | crngring 20150 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | evl1var.v | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
4 | evl1vard.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | evl1vard.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
6 | 3, 4, 5 | vr1cl 22091 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝑈) |
7 | 1, 2, 6 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
8 | evl1var.q | . . . . . 6 ⊢ 𝑂 = (eval1‘𝑅) | |
9 | evl1var.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
10 | 8, 3, 9 | evl1var 22210 | . . . . 5 ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐵)) |
11 | 1, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑋) = ( I ↾ 𝐵)) |
12 | 11 | fveq1d 6887 | . . 3 ⊢ (𝜑 → ((𝑂‘𝑋)‘𝑌) = (( I ↾ 𝐵)‘𝑌)) |
13 | evl1vard.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
14 | fvresi 7167 | . . . 4 ⊢ (𝑌 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑌) = 𝑌) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → (( I ↾ 𝐵)‘𝑌) = 𝑌) |
16 | 12, 15 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((𝑂‘𝑋)‘𝑌) = 𝑌) |
17 | 7, 16 | jca 511 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∧ ((𝑂‘𝑋)‘𝑌) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 I cid 5566 ↾ cres 5671 ‘cfv 6537 Basecbs 17153 Ringcrg 20138 CRingccrg 20139 var1cv1 22050 Poly1cpl1 22051 eval1ce1 22188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-ofr 7668 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14296 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-hom 17230 df-cco 17231 df-0g 17396 df-gsum 17397 df-prds 17402 df-pws 17404 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-mulg 18996 df-subg 19050 df-ghm 19139 df-cntz 19233 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-srg 20092 df-ring 20140 df-cring 20141 df-rhm 20374 df-subrng 20446 df-subrg 20471 df-lmod 20708 df-lss 20779 df-lsp 20819 df-assa 21748 df-asp 21749 df-ascl 21750 df-psr 21803 df-mvr 21804 df-mpl 21805 df-opsr 21807 df-evls 21977 df-evl 21978 df-psr1 22054 df-vr1 22055 df-ply1 22056 df-evl1 22190 |
This theorem is referenced by: evl1varpwval 22236 ply1remlem 26054 fta1blem 26060 idomrootle 26062 plypf1 26101 lgsqrlem1 27234 aks6d1c1p2 41486 aks6d1c1p3 41487 aks6d1c1p7 41490 aks6d1c2lem4 41503 aks6d1c5lem1 41512 aks6d1c5lem2 41514 lineval 47350 |
Copyright terms: Public domain | W3C validator |